

Single – Stack

Double – Stack

SUPERCLEAN 1600-55 A/M RINSER/DRYER

OPERATIONS AND MAINTENANCE MANUAL

Manual Part Number: 9300152.1

Goldfinger Technologies LLC

1241 E. Dyer Rd., Suite 100 Santa Ana, CA USA 92705-5611 Telephone: (714) 445-2000 www.akrion.com

COPYRIGHT© 2005 Goldfinger Technologies LLC

All rights reserved. Any reprinting or unauthorized use without the written permission of Goldfinger Technologies LLC is expressly prohibited.

This document contains proprietary information of Goldfinger Technologies LLC and is tendered subject to the conditions that the information:

- be retained in confidence,
- not be reproduced or copied in whole or in part, and
- not be used or incorporated as part of any product, except under an express written agreement with Goldfinger Technologies LLC

All information in this document is subject to change without notice.

The information in this manual has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies or omissions.

References in this manual may describe optional equipment. Please contact a GFT sales representative for information about standard and optional equipment.

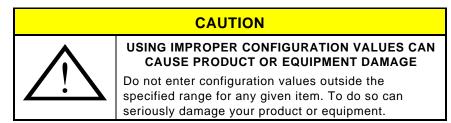
This document is available on cleanroom paper. Contact Goldfinger Technologies LLC to order.

Operations Manual Part Number: 9300152.1 Document Release Date: 02/07/05

PRODUCT MASTER STRUCTURE

Product Structure			Model No. and Description
Manual No.: 9300152.1			SuperClean <u>1600-55</u> /M
Schematic Numbers:			Lin to G inch wofers
Centrifug	1098566.1		Up to 6-inch wafers
FREM Single-Stack Cabine	t 1098565.1		Automatic Door
FREM Double-Stack Frame 1098564.1			Manual Door
Bay and Chase Single-Stack Cabine	t TBD		
Bay and Chase Double-Stack Fram	9 1098563.1		
Table-To	1098577.1		
Plumbing Schemati	1067705.1		
Electrical Schemati	1074044.1		
Controller Assembl	/ 1075227.1		
Optical Sensor Testo	r 1068949.1		

REVISION HISTORY


Date	Section	Description
05/01/00	Entire Manual	Initial Release of a complete re-write. New sections include: Software Functional Description Improved Operating Instructions Additional Maintenance Procedures Particle Troubleshooting Flowcharts SECS II Communications Schematics and IPBs Spare Parts Lists Technical Reference
07/11/00	Schematics	Replaced all facility drawings with new
11/30/00	Schematics	Replaced all 1071233 Controller drawings with 1075227
12/04/00	Section 3	Removed AutoWash Note on Page 3-8
01/11/01	Section 6	Added Installation Procedures
05/10/01	Section 7	Corrected Spare Parts List, added Clear Lens
05/10/01	Section 8	Added Table-Top Facilily Requirements Drawing 1098577
04/03/03	Section 8	Replaced Electrical Schematics 1074044 with rev C
05/09/03	Section 4	Added Return Service Parts Instructions
05/09/03	Section 6	Improved Install and Test Procedures
09/15/03	Section 3	Updated EMO "Twist and Lock" Pushbutton Information
02/07/05	Entire Manual	Updated Title, Name, and Logo to Goldfinger Technologies, LLC

THIS PAGE INTENTIONALLY LEFT BLANK.

PREFACE

This preface includes the following topics:

- intended use and audience
- customer support
- determining the features and options on your dryer

Intended Use Of This Dryer

This dryer is not to be used for any purpose other than for which it was designed. What product is to be produced and how the hardware and software are to be configured for the allowed processing chemicals and parameters are stated in this manual.

Intended Audience

The level of detail in this manual assumes you have previously been trained by an authorized GFT trainer to operate and maintain this system.

This document supplements the training class and addresses the comprehensive needs of Process Engineers and Maintenance personnel. After reading and understanding this information, Process Engineers are responsible for disseminating the appropriate level of information to their Equipment Operators.

Customer Support

For assistance in operating this dryer, refer first to this manual. If this manual does not address your specific question, please contact GFT Field Service: (refer to the maintenance section for customer repair support and return parts information).

Goldfinger Technologies, LLC	Phone: (714) 445-2000
1241 E. Dyer Rd., Suite 100 Santa Ana, CA USA 92705-6533	Fax: (714) 445-2204
From 8:00 a.m. to 5:00 p.m., PS1	, Monday through Friday

When calling, please be at the dryer, if possible, and be prepared to give a detailed description of the problem and the dryer's serial #.

NOTE

Review your contract warranty statements regarding specific instructions for receiving help.

Determining the Dryer's Features and Options

Your dryer can be configured with several features and options. The mix of features and options were determined at the time of sales. Since this Operations and Maintenance manual is comprehensive in content, (having all the information needed for all the features and options), the following tables will help you to determine the features and options on your dryer.

Once you are familiar with the configuration of your dryer model, you can then use the corresponding information in this manual to properly operate and maintain the dryer and ignore all other information not related to your dryer and it's features and options.

There are three major pieces of information needed to determine the features and options included at time of sales. They are:

- Software Version and Revision
- Standard Features and Options for each software version
- Additional Features and Options ordered at time of sales

The following tables may not take into account any feature or option added on after shipment of the dryer from the GFT factory.

Software Version and Revision

On the Control Panel type in the programmable code **1602**. The resulting group of numbers represent the software version and revision currently in the dryer's controller. The **1600** represents the dryer, the first set of dashed numbers represents the software version (i.e., **-005**) and the second set of dashed numbers represent the revision level (i.e., **-03**). As revisions occur, the second set of dashed number on your Control Panel may be greater in value then what is listed here but still applies.

If the Software Version number is:	Then these are the Standard Features on your dryer
1600 – 005 – 05 (GFT Controller P/N: 1075227.755	This is the standard baseline controller and software. There are no additional features. Ignore the information in Section 3.2.1, <i>Optional Features</i> .
1600 – 007 – 01 (GFT Controller P/N: 1075227.775	All standard features plus the Security Passcode option. Refer to Section 3.2.1.4 for details.
1600 – 008 – 03 (GFT Controller P/N: 1075227.784	All standard features <i>plus</i> the AutoWash option. Refer to Section 3.2.1.2 for details.

9300152.1

If the Software Version number is:	Then these are the Standard Features on your dryer	
1600 – 009 – 01 (GFT Controller P/N: 1075227.795	All standard features <i>plus</i> the Security Passcode and AutoWash options. Refer to Section 3.2.1.2 and 3.2.1.4.	
1600 – 0011 – 03 (GFT Controller P/N: 1075227.751	All standard features <i>plus</i> the CO_2 Injection Module option. Refer to Section 3.2.1.5 for details.	

Additional Features and Options

The following list of options is not the complete list of all options available. Rather, this table lists the options, if ordered, that will affect the proper operations and/or maintenance of the dryer. To determine if your dryer has any of the following options, refer to the sales order for this dryer or call GFT Inside Sales, then go to the listed section in the manual for details about the option.

Options	Operations Sections:	Maintenance Sections:
Audible Alarm	3.2, 3.2.1.5.3, 3.2.1.1, 3.2.1.2, 3.6	
Boat Detection	3.2.1.3	
CO ₂ Injection Module	3.2.1.5	4.16
DI H ₂ O Filter		
EMO Pushbutton	1.2.3, 3.4	
Footswitch	3.2	
Heater Indicator Light	3.6	4.13
Hinged Doors		4.6, 4.9
Manual Door Latch		4.6, 4.9
N ₂ Filter	3.6, 3.8	4.3
Resistivity	2.2.9, 3, 3.3	4.15
Rotor Style		4.4, 4.10
others:		

THIS PAGE INTENTIONALLY LEFT BLANK.

CONTENTS

Product Master StructureFrom	ont sheet 1
Revision HistoryFree	ont sheet 1
Title Page / CopyrightFrom	ont sheet 2

Preface

Intended Use of this Dryer	i
Intended Audience	i
Customer Support	I
Determining the Dryer's Features and Options	. ii
Software Version and Revision	. ii
Additional Features and Options	iii

1 Safety Systems

1.1	S2-93 Specifications	1–1
	1.1.1 Hazards and Safety Issues	1–1
	1.1.2 Environmental Information	1–2
	1.1.3 Ergonomics	1–3
	1.1.4 Seismic Activity Procaution	1–3
	1.1.5 User Supplied Devices	1–3
1.2	Dryer Safety Protection	1–3
	1.2.1 Dryer Circuit Protection	1–3
	1.2.2 Electrical Disconnect and Equipment Lockout	1-4
	1.2.3 Emergency Shutdown	1–4
1.3	Lighting in Work Areas	1–6

2 Theory of Operations and Specifications

2.1	Produ	ct Introduction	2–1
2.2	Theor	y of Operations	2–3
	2.2.1	Rinsing	
	2.2.2	Drying	
	2.2.3	Recipes / Steps	
	2.2.4	Cycles	
		Bowl Seals	
	2.2.6	AutoWash	
	2.2.7	Labyrinth Seal	
		Autopositioner	
		Resistivity Controller	
		Foldout Overview	
2.3	Softw	are Functional Description	
	2.3.1	Overview	
		Power Up Mode	
	2.3.3	Idle Mode	
	2.3.4	Alarm Mode	
	2.3.5	Open Door Mode (1600-55A)	2–10

	2.3.6	Close Door Mode (1600-55A)	2–10
	2.3.7	Run Recipe Mode	2–11
2.4	Speci	fications	2–12
	2.4.1	Standard Features	2–12
	2.4.2	Load Capacities	2–12
	2.4.3	Operating Parameters	2–12
	2.4.4	Facility Requirements	2–13

3 Operating Procedures

3.1	Contro	ol Panel Functions	
	3.1.1	Numeric Read-Out on the Control Panel	3–2
	3.1.2	Fault (HELP) Display Mode	3–2
	3.1.3	LEDs	3–3
	3.1.4	Control Panel Keys	3–3
3.2	Pushb	outton Controls	3–5
	3.2.1	Optional Features	
		3.2.1.1 Wash Warning Feature	3–7
		3.2.1.2 AutoWash Feature	3–8
		3.2.1.3 Boat Detect Feature	
		3.2.1.4 Program Security Passcode Feature	
		3.2.1.5 CO ₂ Injection Module	3–10
3.3	Recip	e Programming	3–12
	3.3.1	Recipe Options Descriptions	
		3.3.1.1 Viewing an Existing Recipe	3–12
	3.3.2	Programming a Recipe	3–13
		3.3.2.1 Rinse-&-Dry Recipe Programming Examp	le 3-14
		3.3.2.2 Dry-Only Recipe Programming Example	3–16
3.4	Opera	ting Procedures	3–17
	3.4.1	Safe Start Up Procedures (Component Only)	3–17
	3.4.2	Safe Start Up Procedures (Frame or Cabinet)	3–17
	3.4.3	Wafer Processing Procedures	3–18
	3.4.4	Emergency Shutdown Procedure	3–19
		3.4.4.1 Emergency Wafer Retrieval Procedure	3–19
	3.4.5	Safe Shutdown Procedures	3–20
3.5	Progra	ammable Codes	3–21
3.6	Fault	(HELP) Codes	3–22
		Faults with No Codes	
3.7	Contro	oller Card Dipswitch Settings	3–24
	3.7.1	Controller Card LEDs	3–26
3.8	Nitrog	en Regulators	3–26
3.9	Valve	Bracket Assembly	3–27

4 Maintenance Frequencies and Procedures

	To Reach GFT Customer Support4-To Return Service Parts For Repair4-	•
4.1	Preventive Maintenance Frequency4-4.1.1 Daily Maintenance4-4.1.2 Weekly Maintenance4-4.1.3 Monthly Maintenance4-4.1.4 Semi-Annual Maintenance4-	-3 -3 -4
4.2	Static Eliminator Test Procedure4-	-7
4.3	Nitrogen Filter Replacement Procedure4-	-9
4.4	Bowl and Motor Change Procedure 4-1	11
4.5	Resetting the Clean Coil Thermostat	23
4.6	Door Positon Adjustment Procedure 4-2	25
4.7	Labyrinth Seal Cleaning Procedure 4-2	27
4.8	Hub Installation Procedure 4-2	29
4.9	Door Bladder Replacement Procedure	31
4.10	Rotor Removal and Installation Procedure 4-3	35
4.11	Retaining Bar Tube Replacement Procedure	37
4.12	PFA Rod Maintenance Procedure4-3	39
4.13	Bowl Heater Verification Procedure 4-4	13
4.14	Cleaning the Rinser/Dryer 4-4	15
4.15	Resistivity Probe and Monitor Test Procedure	17
4.16	CO2 Injection Module Maintenance Procedures 4-5	51
4.17	Particle Troubleshooting Procedures 4-5	55

5 SECS II Communications

5.1	Programming the Host Computer 5-1			
5.2	Syste	System Components and Specifications		
5.3	Suppo	orted Functions		
5.4	Streams and Functions5-			
5.5	5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6	action Detail Presence Checking Status or Error Check Remote Error Reset Commands Select Recipe Change Recipe	5–4 5–5 5–8 5–9 5–9 5–10 5–11	
		Read Recipe Stream 9 System Errors		

6 Install and Test Procedures

6.1	Install	ation Summary Instructions
	6.1.1	Facility Requirements - Single Dryer
	6.1.2	Facility Requirements - Double-Stack Dryers
	6.1.3	Physical Requirements for Wet System Mounting 6-3
	6.1.4	Pre-Installation Safety Information
	6.1.5	Installation Procedures - Single Dryer
	6.1.6	Installation Procedures - Double-Stack Dryers
6.2	After-	Install Test Procedures-Auto Door
6.3	After-	Install Test Procedures-Auto Door

7 Standard Spare Parts Lists

7.1	How to Order
7.2	Combined List
7.3	Additional Lists

8 Schematics and IPBs

10 Training Supplements

1 SAFETY SYSTEMS

1.1 S2-93 Specifications

GFT recommends that persons servicing the dryer are trained, experienced technicians with a basic understanding of the concepts and procedures inherent to electronic technology and chemistry. Without such knowledge, attempted servicing may render the equipment unfit or unsafe for use.

1.1.1 Hazards and Safety Issues

Verify that all persons installing, operating, or providing service and maintenance to the dryer adhere to the following guidelines:

	SAFETY ISSUES
1.	Follow all procedures as outlined in this manual and comply with all WARNINGS and CAUTIONS pertaining to electrical, chemical or operating hazards. Voltages exceeding "safe" limits are present in the SRD and are identified by the WARNINGS throughout this manual. Failure to comply with these WARNINGS may result in severe electrical shock or death.
2.	DO NOT under any circumstances remove equipment covers that have warning labels prohibiting removal. These warning labels indicate safety hazards and require compliance.
3.	When handling chemicals always wear protective clothing and follow industry prescribed chemical handling techniques.
4.	All system service and maintenance must be performed by a trained, competent person. When performing service and maintenance always follow the appropriate procedure as outlined in this manual as a minimum.

Important information in the manual is distinguished by the following notations:

NOTE

Specific information is placed in a NOTE box when clear procedural understanding is essential.

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE! Caution notices will be used where equipment or product damage might occur if care and attention is not taken.

WARNING		
	HAZARDOUS CHEMICALS CAN CAUSE SEVERE INJURY OR DEATH!	
	Before attempting removal procedures apply your company's chemical and electrical lockout and tag procedures, which are supplemented by these procedures. Also, these procedures must be performed while wearing the appropriate level of personal protective equipment, such as, but not limited to:	
	goggles apron boots	
	gloves respirator	

Your company's policies and procedures for safely operating the dryer supersede the safety considerations listed below. It is your responsibility to follow your company's safety procedures. If there are none, follow those established by these instructions, OSHA, DEQ, and/or the DOT, as a minimum.

1.1.2 Environmental Information

The following information is available from GFT's Health and Safety department for the baseline process:

• Overall Chemical Mass Balance

- Volumetric Flow
- Exhaust Concentration Un-reacted Process Chemicals
- Waste Water Contaminants
- Known Environmental Restrictions Baseline Chemistry

1.1.3 Ergonomics

GFT does not provide specific installation location requirements. However, the installation location should account for height, reach, load weight, and other factors to provide the operator a safe and comfortable access to the tank and the system keypad/display. To quote guidelines indicated in SEMI S2-93, the installation should account for the "5th percentile small Asian female to the 95th percentile large American male". Typical installations generally place the system so that the grasp height is approximately 35- to 38-inches above foot level, and no farther than a 7- to 18-inch reach.

WARNING

DRYER IS TOO HEAVY FOR ONE PERSON LIFT! Due to the excessive weight of the dryer, handling (lifting) should be performed by two persons (minimum).

1.1.4 Seismic Activity Precaution

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

The system should be secured in such a fashion as to inhibit movement in the event of any seismic activity.

Regardless of the locating and leveling means, the dryer should be secured against both vertical and horizontal movement. Securing means should take into account the weight of the dryer under normal operating conditions.

1.1.5 User Supplied Devices

"User Supplied Devices" refers to signal lights, switches and alarms, etc., that may be interfaced with the dryer but are not supplied by or purchased from GFT.

Before connecting a user supplied device to the dryer, always refer to the specifications outlined in the drawings to verify that the device can be supported and to determine which wires are used to interconnect the device to the dryer.

1.1.6 Equipment Noise Data

The end user of this equipment can expect a continuous A-weighted sound pressure level of less than 70dB(A) at the front of the dryer; and no peak C-weighted instantaneous sound pressure levels in excess of 63 Pa.

1.2 Dryer Safety Protection

GFT suggests the following protection for all dryers.

- Dryer Circuit Protection
- Electrical Disconnect and Equipment Lockout and Tag
 Procedures
- Emergency Shutdown (EMO / EPO)

1.2.1 Dryer Circuit Protection

The facility circuit protection device should be rated to withstand the short circuit current of no less than 10,000 rms symmetrical amperes at 208/120 volts at the incoming terminals.

Power receptacle service requirements are standard #10 AWG 20 ampere wiring, NEMA receptacle configuration type 15-20R. If the specified receptacle is not used, rigid conduit, or flexible conduit for runs of less than 20 feet, must be used. A Ground Fault Interrupter (GFI) with a trip current of less than 7 mA should be employed for personal protection.

1.2.2 Electrical Disconnect and Equipment Lockout

Follow standard procedures when working on electrical equipment. The breaker box or branch circuit feeding the equipment must be locked and tagged with the appropriate information.

GFT may not supply a lockable, safety-type electrical disconnect with some dryers. GFT therefore suggests that the end-user provide a means of disconnecting power to the dryer with a lockable-type safety disconnect. Follow all equipment safety Lockout and Tag procedures as outlined in your country's and/or company's equipment safety manuals.

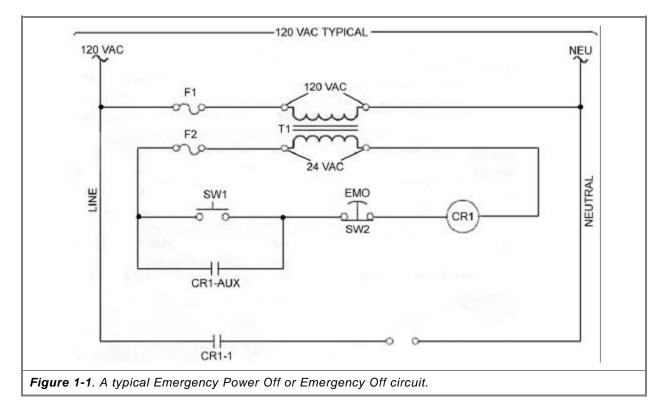
European standards require proper markings on the disconnect. If a mains plug is installed, is should conform to IEC 320. The EU end user should provide a main power cord that meets the requirements of IEC 227 or IEC 245, and is listed by a recognized European testing laboratory (i.e., HAR Cordage).

1.2.3 Emergency Shutdown

GFT and S2-93 specifications recommend the installation of an Emergency Power Off (EPO) push-button on all dryers to shut main power off should an "EMERGENCY" situation arise. The EPO pushbutton should be of the red mushroom-type and labeled "*EMERGENCY POWER OFF*".

NOTE

The EPO mounting height should not exceed 63.5 inches from the floor. If planning to install an EPO, it is important to provide a separate POWER ON button to return power after MAIN POWER has been shut off.


CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

If installing an EPO button, a clear PVC sleeve surrounding the EPO button is required to prevent accidental activation of the EPO.

The following diagram (Figure 1-1) is a typical Emergency Power Off or Emergency Off circuit.

Circuit Components	Description
F1	Primary protection for transformer T1
F2	Secondary protection for transformer T2
T1	24 VAC isolation transformer
SW1	Momentary POWER ON pushbutton (green)
SW2	EMO (EPO) pushbutton, red mushroom-type, 60 mm diameter with shroud
CR1	24VAC power contractor with N.O. auxiliary contact

If the input voltage is reduced to 24 VAC, SW1 energizes CR1 and is held using a CR1-AUX contact, also applying power to the dryer using a CR1-1 main contacts (120 VAC). Should an emergency arise, the operator presses the EMO pushbutton which will open the circuit and removing all AC input to the dryer.

1.3 Lighting in Work Areas

CAUTION

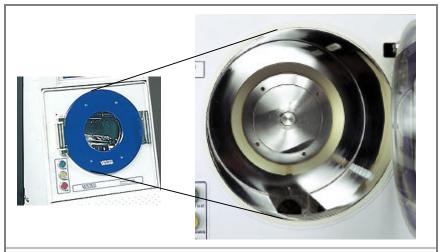
IMPROPER LIGHTING CAN CAUSE HAZARDOUS CONDITIONS

When performing maintenance in enclosed bays and cabinets, S2-93 safety requirements call for the lighting to be at or greater than 30 footcandles in power. Use additional lighting apparatuses where lighting is less than 30 footcandles in all work areas associated with GFT equipment.

2 THEORY of OPERATIONS and SPECIFICATIONS

2.1 **Product Introduction**

The SuperClean 1600-55 A/M is a single cassette, front-loading, programmable rinser/dryer used to rinse and dry semiconductor wafers, photomasks, and substrates up to six inches (150mm) in diameter. The Component-only model's electrical components are in separate enclosures for easy integration into wet systems. The dryer can also be configured as 'single-stack' or 'double-stack' standalone models in two different configuration cabinets (Figure 2-1).


Figure 2-1. The SuperClean 1600-55 A/M dryer models can be configured as a 'Component-only' (left), a 'single-stack' (middle) or a 'double-stack' (right). The models shown are typical examples. Your dryer may have less or more features than the ones shown here and some of the features may be in different locations. Also refer to the foldout at the end of this section.

The patented noncontact nitrogen labyrinth seal is key to the effectiveness of the dryer. Filtered nitrogen gas flows through the seal area forming a gaseous barrier that seals the bowl from outside contaminants and keeps N_2 and water in the bowl from escaping. Since the shaft and bowl of the dryer have no mechanical contact, particulate contamination is virtually eliminated.

Upon completion of the final rinsing step of a wet process, the wafer and cassette surfaces are primarily dried through spinning action. Liquid droplets on the bowl and other surfaces are evaporated with heated nitrogen which absorbs moisture rapidly. Ionized nitrogen neutralizes static charges in order to prevent particle attraction and reattachment. The dryer provides effective drying while minimizing particles as small as 0.15 micron from being added to the wafers. The dryer can also be used to pre-rinse wafers prior to drying.

The dryer can run two types of cycles: rinse and dry. The cycles are controlled independently, therefore, a rinse and dry, rinse only, or dry only cycle can be programmed.

The process bowl is designed to eliminate as many welds as possible and electropolished to provide a corrosion resistant surface (Figure 2-2). The interior is meticulously detailed to provide an ultrasmooth surface with excellent rinsing characteristics to prevent particle trapping. To complement the cleanliness of the bowl, the dryer features an ultrapure plumbing design with an in-line 0.03 µm nitrogen filter. A static eliminator is provided to prevent static buildup which can cause particles to reattach to product (wafer) surfaces. The dryer features multi-step, multi-recipe editing with user-programmable control over several processing options. The controller governs a full complement of safety features and has built in diagnostics to ensure that the dryer is well protected and very reliable. The dryer is designed to operate with a full or partial product load in manual or wet process systems, and in free standing cabinets. Systems used in automated environments include host communications and fully automated door control.

Figure 2-2. The inside of the process bowl is designed to eliminate as many welds as possible and electropolished to provide a corrosion resistant surface.

2.2 Theory of Operations

GFT's SuperClean 1600-55 A/M dryer uses centrifugal force to dry the surface of the wafers. A cassette is placed inside the drying chamber, held in place by a rotor, and spun at an appropriate speed depending on the nature of the load and the process. The drying chamber (bowl) is warmed with a continuous flow of hot filtered nitrogen and surface heaters on the outside walls. The liquid on the wafer surface is spun off and drained from the bowl while liquid droplets on the drying chamber surfaces are evaporated.

The dryer can also be configured, at time of purchase, to pre-rinse the wafers prior to the drying cycle with ultra-pure DI water. The water is sprayed from a line of strategically placed nozzles to provide even rinsing of the wafer surfaces. This is done to rinse residual chemistries from the surface, or to replace existing water with fresh water prior to drying. When the dryer is used for dry-only processing, the rinse cycle can also be used for periodic cleaning of the bowl surfaces between process sessions.

2.2.1 Rinsing

A typical rinse cycle consists of DI water being sprayed into the bowl through six nozzles while the rotor (and cassette) rotates. The length of the rinse cycle is determined by either the programmed cycle duration, or by an optional resistivity monitor that measures when the resistivity of the rinse water has reached the desired setpoint.

2.2.2 Drying

A typical dry cycle consists of filtered nitrogen entering the bowl through the door blowoff nozzle, static eliminator manifold, and bowl nozzles. The nitrogen flowing into the bowl is heated if the heater has been programmed into the recipe. The nitrogen that floods the bowl is ionized if the static eliminator function has been programmed into the recipe. The duration of the dry cycle and speed of the rotor are determined by values programmed into the recipe.

2.2.3 Recipes / Steps

Recipes define the performance capabilities of the dryer. Process recipes include the cycle duration, spin speeds, and whether to include a rinse step or not. Speeds for different wafer sizes may vary as can the time required to dry the bowl and cassette surfaces. The dryer can be programmed to store up to ten recipes, with each recipe capable of containing up to ten steps. Each step of the recipe controls either a rinse cycle or a dry cycle, depending on the requirements of each unique process.

2.2.4 Cycles

The dryer runs two cycles - *rinse* and *dry*. The cycles are controlled independently, so the dryer can rinse and dry, rinse only or dry only. Cycles are initiated by recipes that have been programmed.

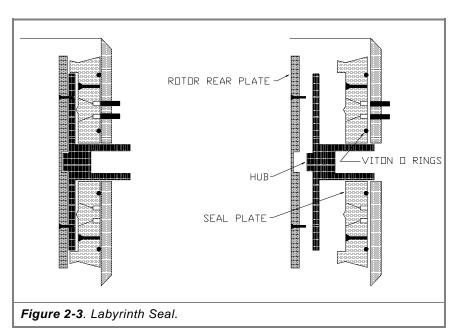
The dryer can store up to 10 preprogrammed recipes, each of which can contain 10 steps or *cycles*. The conditions in any particular rinse or dry cycle vary depending on the functions programmed into a recipe. Nitrogen, DI water, heater, resistivity monitor and static eliminator options function during a cycle, only if they are included in the recipe.

During a typical rinse cycle, DI water is sprayed into the bowl through six (6) nozzles as the rotor turns at the speed selected. The length of any rinse cycle is determined by a rinse timer program or by measuring the resistivity of the rinse water to determine if it equals or exceeds a programmed setpoint.

A typical dry cycle consists of filtered nitrogen entering the bowl through the door blowoff nozzle, static eliminator manifold, and the bowl nozzles. The N_2 flowing through the dryer is heated if programmed "ON". Ionized nitrogen floods the bowl if the optional static eliminator has been programmed into the recipe. The duration of the dry cycle and speed of the rotor are determined by values programmed into the recipe.

2.2.5 Bowl Seals

To keep particle contamination to an absolute minimum, the front and back of the bowl are sealed. The door is pulled shut, a recipe is selected and the dryer is started. An air cylinder system pulls the door against the door seal. The door can be unsealed and opened only when the last cycle in the recipe is complete or the cycle has been aborted. The bowl is nitrogen-purged prior to the door being sealed and when the door is opened to prevent possible contamination.


2.2.6 AutoWash

If the dryer is used for dry cycles only, it must be periodically rinsed with DI water to ensure consistently clean operation. The dryer can be programmed to illuminate a warning LED if a user-programmed number of dry-only cycles have been run or a user-specified time interval has passed with the dryer in idle mode, indicating to the operator that a rinse cycle is due. The dryer will automatically initiate a rinse cycle after the cycle or time counter has expired. The bowl is rinsed for a user-specified number of minutes as it rotates at 100 RPM.

2.2.7 Labyrinth Seal

The area between the hub and seal plate at the back of the bowl is sealed by GFT's patented labyrinth seal. Filtered nitrogen flows to the seal during a cycle, forming a gaseous barrier that seals the bowl from outside contaminants. Because this is a gaseous, noncontact seal, static charges are not produced nor do particles slough off and contaminate the wafers.

Figure 2-3 shows a cross-section of the bowl. The seal area is the gap between the hub and the seal plate. During operation, nitrogen is pumped into the gap from two sets of nozzles. One set blows filtered nitrogen through the seal area in the bowl so water can't leak out. The second set blows nitrogen through the seal area and out the back of the bowl so contaminants can't get in. The result is a perfectly sealed bowl without the stray charges of particle contamination of contact-type seals.

2.2.8 Autopositioner

To further protect the wafers, the dryer uses a rotor autopositioner to automatically index (to the upright position) the rotor at the end of every cycle. The autopositioner rotates the rotor so that the carrier stops in the upright position. The door will not unseal until the rotor is properly indexed, ensuring that the wafers cannot accidentally fall out of the carrier during automatic removal by a robot or manual removal by an operator.

2.2.9 Resistivity Controller

The electronic circuitry used in the resistivity controller combines a high input impedance analog amplifier with an 8-bit microprocessor to provide accurate and stable readings.

Accuracy is not dependent on a reference voltage, but rather on the stable reference resistors and the microprocessor's crystal clock. An AC square wave current is generated at 75 Hz for resistivity and applied to the cell through a multiplexer. The resistivity is then calculated as proportional to the voltage generated across the cell electrodes. Since this resistance varies with temperature, a correction must be made to relate the resistivity to what it would be at 25 °C. This calculation is accomplished in the microprocessor by DC input from the resistance temperature detector (RTD) which is internal to the cell.

The RTD increases in resistance for increasing temperature. Metering the DC resistance of the RTD gives the microprocessor accurate temperature information to calculate resistivity to 25 °C. This correction factor calculation assumes the solution resistivity varies with temperature as if all the impurity ions are sodium chloride (NaCI). Although NaCI is rarely the only impurity present, it is typical of many inorganic impurities and is the usual standard for this calculation. The microprocessor must sequence through the following measurements or calculations:

- AC resistance (uncorrected) of the cell
- DC resistance of the RTD
- Calculation of corrected resistivity to 250 °C.
- Measurement of set point controls
- Comparison of corrected resistivity to setpoint
- Control output signal

Temperature °C	Resistivity (megohm-cm)	Resistance (± DC ohms)
0	88.2	500.0
10	44.4	520.8
20	23.8	542.3
25	18.3	553.3
30	13.7	564.5
40	8.5	587.3
50	5.6	610.8
60	3.9	634.8
70	2.9	659.3
80	2.1	684.2
90	1.7	709.5
100	1.3	735.1

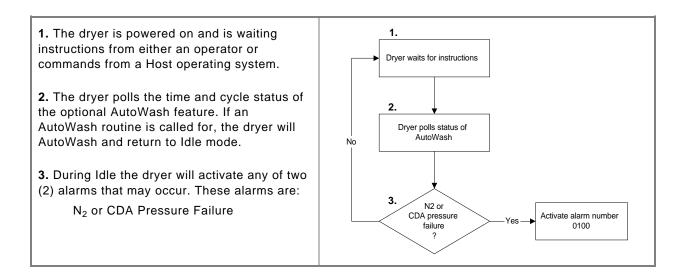
2.2.9.1 Resistance-Temperature Data 18.3 megohm-cm (Pure Water)

2.3 Software Functional Description

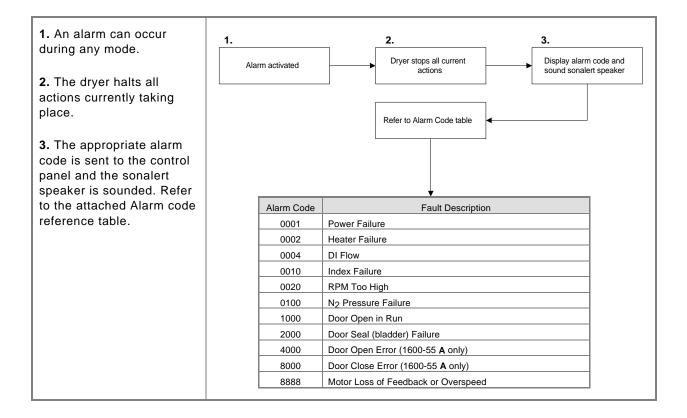
The dryer's software functions within 6 basic modes of operation. These modes are:

Mode	Refer to Section:
Power Up	2.3.2
Idle	2.3.3
Alarm	2.3.4
Open Door	2.3.5
Close Door	2.3.6
Run Recipe	2.3.7

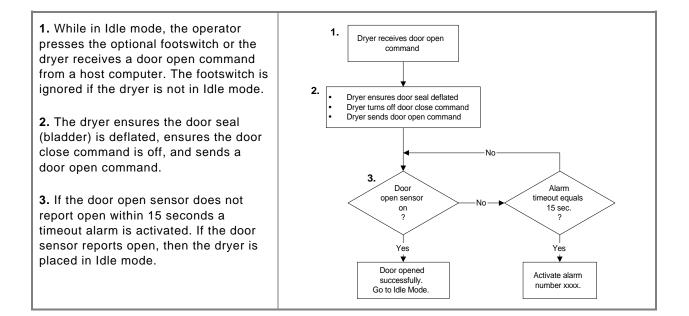
2.3.1 Overview

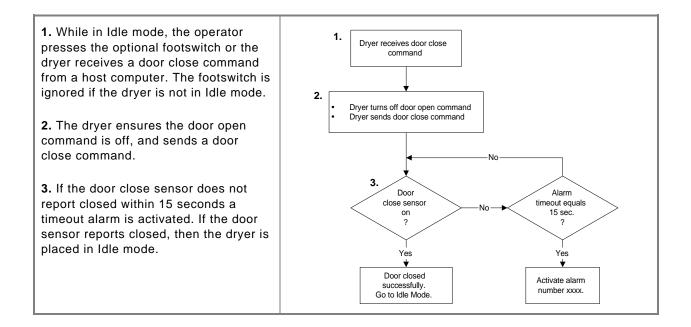

The **Power Up** mode is automatically executed when the dryer is turned on. If no alarms are encountered during this mode, the dryer enters **Idle** mode. The dryer maintains **Idle** mode until it is instructed to perform a function, or until it detects an alarm condition. While in **Idle** mode, the dryer can be instructed to enter the **Close Door** or **Open Door** mode (1600-55 **A** only), or **Run Recipe** mode. After successful completion of any of these modes, the dryer returns to **Idle** mode. If at any time the dryer detects an alarm, it enters the **Alarm** mode.

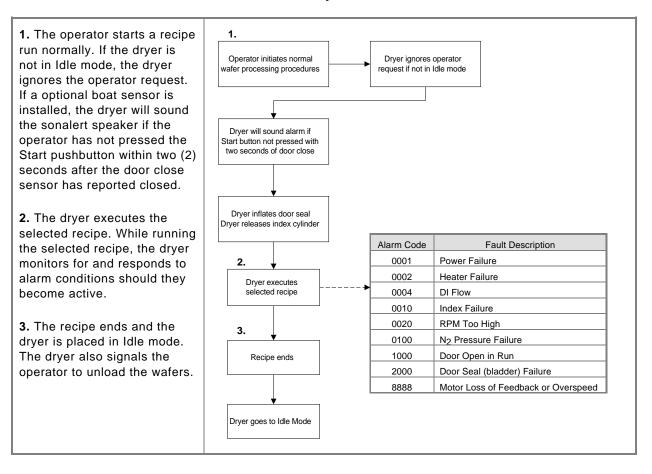
The following flowcharts outline the step-by-step occurrence of the major lines of code within the software. Please keep in mind the timing (sequence) of the flowcharts may appear to act differently from the physical action of the dryer.


1. Operator applies 1. power using normal start Operator initiates standard start up procedures up procedures. **2.** The software checks No for a spinning rotor. Normally, the rotor won't . 1600-55 M Alarm Rotor timeout equals or 1600-55 A be spinning at power up. Spinning 55 sec. If the rotor is spinning, ? the system waits indefinitely for the rotor No to stop for the 1600-55 Yes A, or 55 seconds for the 2. 1600-55 M. If the rotor is Index Alarm Rotor Engaged for timeout equals Yes not spinning, the rotor is Spinning 1/2 second 16 sec. 2 moved to engage the 2 index cylinder. No Yes Yes 3. The index cylinder is engaged. A sensor Recipe Rotor spins to engage Activate alarm number reports when in progress at 0010 index ast power engagement occurs for down longer than 1/2 of a second. If after 16 Yes 3. Index seconds the sensor has No Engaged for Yes not reported engaged, an 1/2 second 5. alarm is sent. Activate alarm number Power on successful. 0001 Go to Idle Mode. 4. If a recipe was in No No progress during the last Yes power down of the dryer, Index the system will activate Alarm Timeout Equals an alarm at the next 16 seconds power up request. ? 5. If no alarms have occurred, then the dryer was successfully powered up and is in Idle mode.

2.3.2 Power Up Mode


2.3.3 Idle Mode


2.3.4 Alarm Mode



2.3.5 Open Door Mode (1600-55A)

2.3.6 Close Door Mode (1600-55 A)

2.3.7 Run Recipe Mode

2.4 Specifications

The following tables outline various specification valves for all standard model configurations.

2.4.1 Standard Features

Feature	Description
Capacity (depends on carrier used)	1 carrier with 0-25 wafers up to 6"
Bowl Dimensions	11.25" inside diameter x 11" deep
DI/N ₂ Nozzles	Six (fan-type)
DI H ₂ O	All PFA fittings, TFE valves, TFE tubing, TFE flowswitches
System N ₂	PFA tubing, PFA fittings, stainless steel N2 heater, and 316 low carbon stainless steel regulators
Cycle speed	50 to 3200 RPM
Cycle Timer	0 to 9999 seconds

2.4.2 Load Capacities

The dryer can process up to twenty-five 6-inch (150mm) or smaller silicon wafers. The dryer can also process square masks.

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Using the wrong cassette in the dryer may cause damage. Ensure the serial number of the cassette matches the number on the rotor. See Section 3, Operations, for location of these numbers. Never run a cycle without the cassette installed in the process bowl. The dryer is balanced with the cassette. Damage to the labyrinth seal and rotor will occur.

2.4.3 Operating Parameters

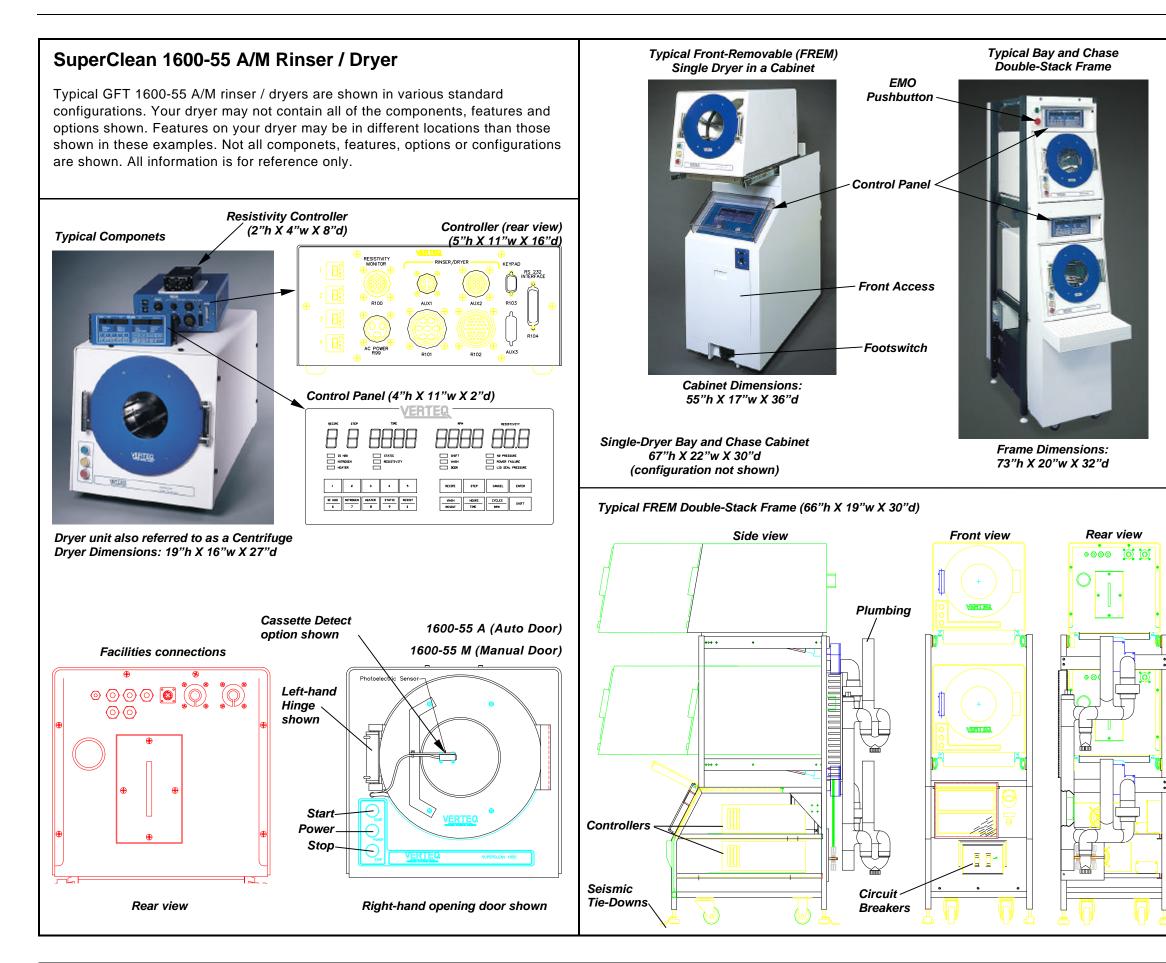
Dryer Operating Parameters and Ranges		
Rinse Cycle Speed	0 (50) to 3200 RPM	
Dry Cycle Speed	0 (50) to 3200 RPM	
Rinse Timer	0 to 9999 seconds	
Dry Timer	0 to 9999 seconds	
Resistivity	0 to 18.2 megohms	

2.4.4 Facility Requirements

Refer to Table 2-1 for a *typical* single dryer, single-stack FREM or single-stack Bay and Chase model. Refer to Table 2-2 for a *typical* double-stack FREM or Bay and Chase model. Always defer to the facilities drawing for your dryer model supplied with this manual if the values differ.

Single Dryer Facility Requirements								
DI H ₂ O Input	³ / ₈ -inch OD Teflon tubing							
	1.75 gpm minimum							
	25 psi dynamic minimum							
	40 psi dynamic maximum for low pressure valve							
	70 psi dynamic maximum for high pressure valve							
DI H₂O Return	³ / ₈ -inch OD Teflon tubing							
	minimum 5 psi lower than input pressure valve							
System N ₂	³ / ₈ -inch OD Teflon tubing							
	6-7 scfm (gauge reading)							
	60 psi dynamic minimum							
CDA / N ₂	Operates pneumatic components							
	¼inch OD Teflon tubing							
	60-90 psi dynamic							
Drain	1 ¼inch mnpt (drain box).							
	1 ¹ / ₂ inch pvc pipe (drain plumbing option)							
Vent	1 ¼inch pvc pipe							
Exhaust	-0.5 max to -1.0 inches of water if not exhausted to fab							
Power	Voltage	Hertz	Amps					
	120 vac	50/60	15 – Standard					
			18 – Step-Up Transformer					
			10 – Step-Down Transformer					

NOTE


Always defer to the facilities drawing for your dryer model supplied with this manual if the values differ.

Double-Stack Dryer Facility Requirements								
DI H ₂ O Input	Dual ³ / ₈ -inch OD Teflon tubing without single point option							
	1/2inch OD Teflon tubing with single point Flaretek							
	1/2inch OD Teflon tubing w/ single point compression							
	3.5 gpm minimum							
	25 psi dynamic minimum							
	40 psi dynamic maximum for low pressure valve							
	70 psi dynamic maximum for high pressure valve							
DI H ₂ O Return	Dual ³ / ₈ -inch OD Teflon tubing without single point option							
	1/2inch OD Teflon tubing with single point Flaretek							
	1/2 inch OD Teflon tubing w/ single point compression							
	minimum 5	psi lower tha	an input pressure valve					
System N ₂	Dual ³ / ₈ -inch OD Teflon tubing without single point option							
	1/2inch OD Teflon tubing with single point Flaretek							
	1/2 inch OD Teflon tubing w/ single point compression							
	12-14 scfm (gauge reading)							
	60 psi dynamic minimum							
CDA / N ₂	Operates pneumatic components Dual ¼inch OD Teflon tubing without single point option ¼inch OD Teflon tubing with single point Flaretek							
	³ / ₈ -inch OD Teflon tubing w/ single point compression							
	60-90 psi dynamic							
Drain	1 ½inch mnpt (drain box). 1 ½inch pvc pipe (drain plumbing option)							
Vent	1 ½inch pvc pipe							
Exhaust	-0.5 max to -1.0" of water if not exhausted to fab							
Power	Voltage	Hertz	Amps					
	120 vac	50/60	15 – Standard					
			18 – Step-Up Transformer					
			10 – Step-Down Transformer					

 Table 2-2.
 Facility requirements for all double-stack dryer model types.

NOTE

Always defer to the facilities drawing for your dryer model supplied with this manual if the values differ.

GUIU	finger				
a wholly owned subsidiary of Akrion, Inc.					
	used Flexible Solutions				
Typical	Features and Options				
Features	Description				
Product Capacity	1 cassette / 0-25 150mm wafers				
Bowl Dimensions	11.25" I.D. X 11" deep				
DI H ₂ O	Six (6) Fan-type. All PFA fittings, TFE valves, tubing, and flowswitches				
System N ₂	PFA tubing, fittings, stainless steel N heater, and 316 low carbon stainless steel regulators				
Cycle Speed	50 to 3200 RPM				
Cycle Timer	0 to 9999 seconds				
	ntact GFT Sales for details)				
Left- or Right-hand I	· · · · ·				
2 Rotor Styles					
CE Marked					
Resistivity					
Flaretek Fittings on	DI H ₂ O Lines				
RA-10 Finish Bowl	2				
High Pressure Teflo	n DI H2O valves				
Millipore N ₂ Filter Ca					
Heater Indicator Lights					
Audible Alarm					
N ₂ Current Heater Detector Manual Safety Door Latch					
No Tools Drain Box	Laten				
CO ₂ Injection (2 Ver	,				
Cassette Detector K	.11				
Housing:					
	le (FREM) Single Cabinet				
Bay and Chase					
FREM Doublestack Frame					
Halar Coating on FREM Doublestack Frame					
Side Panels on FREM Doublestack					
Bay and Chase Doublestack Frame					
Housing Options:					
Resistivity Moni					
EMO for FREM or Bay and Chase					
GFI					
Footswitch					
Drain Plumbing					
Doublestack Single-point Facility Hook up					
PVDF or PFA 0.2μ DI H ₂ O Filter					
Step Down Transformer					
Controller Options:					
AutoWash					
Passcode					
	Passcode				

THIS PAGE INTENTIONALLY LEFT BLANK.

3 OPERATING PROCEDURES

This section includes the following topics:

- Control Panel (Section 3.1)
- Pushbutton Controls and Optional Features (Section 3.2)
- Recipe Programming (Section 3.3)
- Operating Procedures (Section 3.4)
- Programmable Codes (Section 3.5)
- Fault Codes (Section 3.6)
- Controller Card Dipswitch Settings (Section 3.7)
- Nitrogen Regulators (Section 3.8)
- Valve Bracket Assembly (Section 3.9)

3.1 Control Panel Functions

The alphanumeric displays on the control panel (Figure 3-1) have a dual purpose. In the programming, standby, and operating modes the display shows the programmed values. In a fault mode, 'HELP' will be displayed with a fault code number.

VERTEQ											
	RECIPE	STEP	TIME				Rf	РΜ	RESI	STIVITY	
		H20 TROGEN ATER] STATIC] RESISTIV:]	ITY		SHIFT VASH			SSURE FAILURE AL PRESSURE	
	1	2	3	4	5		RECIPE	STEP	CANCEL	ENTER	
	01 H5D	NITRDGEN 7	HEATER 8	STATIC 9	RESIST 0		WASH RESIST	HDURS TIME	CYCLES RPM	SHIFT	
									·		
Figure 3-1.	Control	Panel a	and Ke	/pad la	yout.						

Figure 3-2. Numeric read out on the Control Panel.

RECIPE shows the recipe number from 0-9, with 0 designated as the first recipe.

STEP shows the step (cycle) number from 0-9, with 0 designated as the first step.

TIME shows the time programmed in seconds for each specific step. The time will count down during the cycle. When a system fault occurs, '**HELP**' will be displayed, Figure 3-3.

RPM indicates the programmed rpm. During a cycle, the actual rpm will be displayed. When a system fault occurs, the fault (**HELP**) code number will be displayed.

RESISTIVITY indicates the programmed resistivity setpoint of the drained DI water.

3.1.2 Fault (HELP) Display Mode

When a fault has occurred, the word '**HELP**' will be displayed under the TIME display and the fault or HELP code number will be displayed under the RPM display. For a list of HELP codes refer to Section 3.6.

VERTEQ								
	RECIPE	STEP	TIME	RPM	RESISTIVITY			
		\square	HELP	8888	88.8			
Figure 3-3. HELP Display Mode.								

3.1.1 Numeric Read-Out on the Control Panel

3.1.3 LEDs

DI H20	STATIC	SHIFT	N2 PRESSURE			
NITROGEN	RESISTIVITY	WASH	POWER FAILURE			
HEATER		DOOR	LID SEAL PRESSURE			
Figure 3-4. LED functions of the Control Panel.						

DI H₂O, **NITROGEN**, **HEATER**, **STATIC**, **RESISTIVITY** indicate the functions that have been programmed into the current step (cycle).

SHIFT indicator is actuated by the SHIFT key and is illuminated during the programming mode. SHIFT is used to program only the keys in orange (i.e., DI H_2O , NITROGEN, HEATER, STATIC, RESIST, WASH, HOURS, and CYCLES).

- NI	0	T	
- 11	U		

SHIFT must be off to exit the programming mode.

WASH illuminates when a rinse cycle is necessary to clean the inside of the dryer. See Section 3.2.1.1, *Wash Warning*, and Section 3.2.1.2, *AutoWash*.

POWER FAILURE illuminates at the next power up event after the AC supply voltage has been interrupted during processing.

N₂ PRESSURE indicates that the Nitrogen and CDA supply pressures are adequate.

DOOR illuminates when the door is not properly closed and sealed.

LID SEAL PRESSURE illuminates when the N_2 supply pressure is not adequate.

3.1.4 Control Panel Keys

The keys on the Control Panel are used to program or view recipes and steps. The numerical keys are used to program the recipe, step, cycle duration, rpm, and resistivity level. Several keys have dual functions that are controlled by the SHIFT key. With the SHIFT LED illuminated, the upper functions (displayed in orange) can be programmed. With the SHIFT LED **not** illuminated, the lower functions can be programmed.

1	2	3	4	5	RECIPE	STEP	CANCEL	ENTER
DI H5D	- NITRDGEN	HEATER 8	STATIC 9	RESIST 0	WASH RESIST	HOURS TIME	CYCLES RPM	SHIFT
Figure 3-5.	Control Pa	anel Keys	s functior	าร.				

Numeric Keys are used to program the recipe, step, time, rpm, and resistivity values as well as Wash Warning values.

DI H₂**O**, **NITROGEN**, **HEATER**, **STATIC**, **RESIST**, **WASH**, **HOURS**, **CYCLES** are displayed in orange on the keypad are used to program the process selections of each cycle. To access these functions, press **SHIFT**.

RECIPE is used to select a recipe number from 0-9; up to ten recipes can be programmed.

STEP is used to select a step (cycle) number from 0-9; up to ten steps can be programmed.

CANCEL will erase any programming changes made while in the programming mode. Pressing *CANCEL*, *ENTER*, *ENTER* will revert to the recipe (if any) that had existed before any changes were programmed. The CANCEL key will silence the audible alarm, and will also put the dryer in standby mode when system faults (HELP codes) have been cleared.

ENTER is used to exit the programming mode by pressing it twice.

WASH is not used.

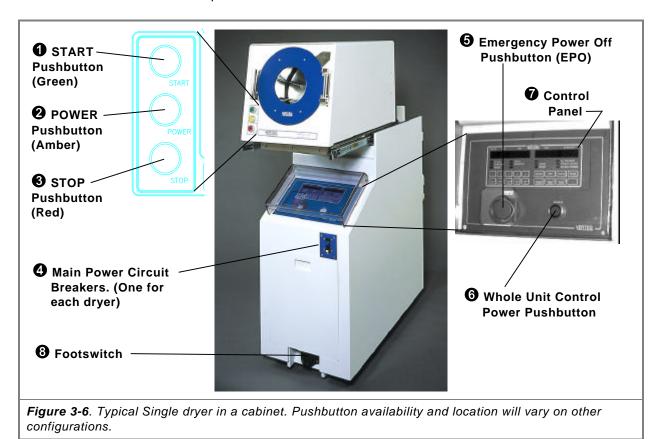
HOURS is used to program the Wash Warning parameters. Ensure all four numbers are keyed in. See Section 3.2.1.1, *Wash Warning Feature*.

CYCLES is used to program the Wash Warning. Ensure all four numbers are keyed in. See Section 3.2.1.1, *Wash Warning Feature*.

RESIST is used to program the resistivity setpoint. Ensure all three numbers are keyed in.

TIME is used to program the cycle duration and is shown in the TIME display. The time is programmed in seconds (e.g., a two minute cycle is programmed as 0120). Ensure all four numbers are keyed in.

RPM is used to program the speed of the rotor and cassette. The minimum and maximum RPM values are determined by the software version.


SHIFT will illuminate when in shift mode and is used to access the following (orange) keys:

- DI H₂O NITROGEN HEATER
- STATIC
 RESIST
 WASH
- HOURS CYCLES

3.2 Pushbutton Controls

Figure 3-6 is for all dryer configurations. Some features are optional and may not be installed on your dryer. Also, the individual feature may be in a different location then what is shown. Refer to the numbered paragraphs for functional descriptions of the various pushbuttons.

- 1. **START** is green and will start a cycle. When a cycle has been interrupted, pressing START will restart the run from the beginning of a recipe and not from the point of interruption.
- 2. **POWER** is amber and must be toggled ON to allow the dryer to function. The Control Panel lights will be illuminated when this button is toggled on. There is one pushbutton for each dryer within a stacked configuration.
- 3. **STOP** is red and is used for non-emergency process interruptions. If the dryer is in process, pressing this button will interrupt the process. Processing cannot be restarted for that lot from where it was interrupted. The wafers should be considered under-processed.

NOTE

Buttons 1, 2, and 3 are standard for all dryer configuration types.

- 4. Main Power circuit breakers are used for Lockout and tagging procedures. There is one for each dryer in cabinet and frame configurations. Component-Only dryers do not have this feature as a standard. Main power from the facility of each dryer is disconnected when the breaker is in the full down and off position.
- 5. EMO is the Emergency Power Off pushbutton. This is optional feature. Power is removed from all dryers downstream of each Main Power circuit breaker. When pushed, this button remains locked in the off position. To restart after an EMO, twist the button while pulling out.
- 6. Control Power pushbutton supplies power to all dryers downstream of the EMO pushbutton. This feature is not standard on the Component-Only dryer models.
- **7. Control Panel** displays all programming, standby, fault and operating mode values. This is standard on all model types.
- **8.** Footswitch is an optional feature which allows operators to toggle the door open or closed with their foot.

3.2.1 Optional Features

The following optional features and equipment may require programming or affect recipes. Refer to the Preface section of this manual and your sales order to determine if your dryer configuration has any of the following features.

3.2.1.1 Wash Warning Feature (Standard)

Your processing requirements may dictate the use of dry cycles only. In this circumstance, the bowl must be rinsed periodically with DI water to ensure a consistently clean operation. The dryer can be programmed to illuminate the WASH LED as a reminder that a rinse cycle is due. The WASH LED can be set to illuminate after a specific number of hours without a rinse cycle or after a specific number of consecutive dry cycles.

If values are set for both hours and cycles, the first to occur will illuminate the warning light. Once a DI water (rinse) cycle is run, the light goes off and the countdown starts over.

NOTE

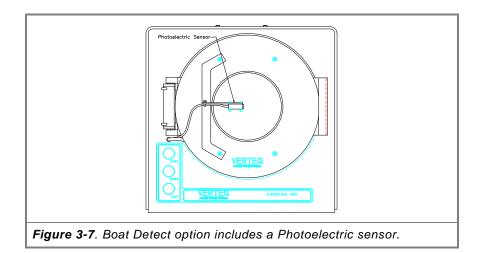
For HOURS and CYCLES to function, both must be programmed with non-zero values. To set for Cycles only, set Hours to 0000. To set for Hours only, set Cycles to 0000.

To set Wash Warning time and cycle parameters:

- 1. Enter 1601.
- 2. Enter the Passcode. (See Section 3.2.1.4)
- **3.** Press HOURS to clear the TIME display, then enter the desired time up to a maximum of 9999 hours.
- 4. Press CYCLES to clear the RPM display, then enter the desired number up to a maximum of 9999 cycles.
- **5.** Press ENTER ENTER to save the settings and exit Wash Warning programming mode.

3.2.1.2 AutoWash Feature

An automatic AutoWash feature will run both a rinse and dry cycle. The rinse cycle duration can be programmed to run for up to 9999 seconds. The dry cycle is pre-programmed to run for 600 seconds (10 minutes). Both cycles are pre-programmed to run at 100 rpm.


To program for AutoWash: (Wash Warning also must be enabled)

- 1. Enter 1604.
- Enter the Passcode. This step only applies if the Security Passcode Option is installed. Otherwise bypass this step. (See Section 3.2.1.4).
- **3.** Press **HOURS** to clear the TIME display, then enter the desired time up to a maximum of 9999 seconds.
- **4.** Press **ENTER ENTER** to save the settings and exit AutoWash programming mode.

If the dryer is in Idle mode with the door closed and then the WASH LED illuminates, the AutoWash recipe will automatically start. If the WASH LED illuminates during a recipe run, the system waits until the recipe stops and the door is opened and closed before commencing the AutoWash.

3.2.1.3 Boat Detect Feature

The boat detect feature ensures the dryer starts a cycle immediately after a cassette is placed in the rotor. The photoelectric sensor detects if a cassette has been loaded. An alarm sounds if a cycle is not started within two seconds after the cassette is detected in the rotor and the door is closed. See Figure 3-7.

3.2.1.4 Program Security Passcode Feature

The security passcode feature restricts access to the following functions:

- Programming a recipe
- Setting Wash Warning parameters
- Programming a AutoWash recipe
- Resetting the passcode

This feature requires the operator to know the security passcode to change the above functions. This feature also allows the user to change the passcode.

When the dryer (or this feature) is first installed, the default passcode is **4861**. This default passcode should be change to a different one. Once your new passcode has been entered, the factory default passcode is overwritten.

NOTE

If the current passcode is forgotten, the battery-backed up RAM chip will need to returned to GFT for reprogramming.

To change the Passcode:


- 1. Place the dryer in Idle mode.
- 2. On the Control Panel type **1605**, then type in the current passcode. If this is the initial change, you will type in **4861**.
- **3.** If the current passcode typed in is not correct, the dryer will exit this program and return to Idle mode. Restart at step 1 above.
- **4.** If the passcode is correct, the Control Panel will show **1111** in the RPM field. The dryer is now ready to accept a new passcode.
- 5. On the Control Panel, type in four new numbers representing the desired new passcode. When the last (fourth) digit is typed in, the Control Panel will display **2222**.
- 6. Type in the desired new passcode again which verifies this new passcode. If the second new passcode does not match the first new passcode, the dryer will exit this program and return to Idle mode. Restart at step 1 above.
- 7. If the second new passcode matches the first new passcode, the Control Panel will display **3333**. This signals success. Press any key to return to Idle mode.

3.2.1.5 CO₂ Injection Options

There are two versions (or applications) of CO_2 injection. The simplified version requires no programming or recipe writing. Refer to the Maintenance section for the CO_2 filter change out procedure. The second version is called the CO_2 Injection Module and it requires a one time adjustment of CO_2 pressure and flow. Refer to the Preface section of this manual and your sales order to determine which CO_2 injection application your dryer configuration has, if any.

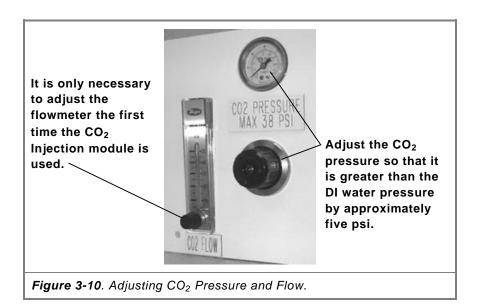
3.2.1.5.1 CO2 Injection Module Introduction

This is an optional device that mixes DI water and CO_2 . Mixing DI water and CO_2 helps prevent corrosion on wafers during rinse steps of a recipe. See Figure 3-8.

3.2.1.5.2 Theory of Operation

The CO_2 Injection Module mixes CO_2 and DI water which is sprayed onto wafers in the process chamber during a rinse cycle. This solution helps remove fluorine and chlorine residues from the surface of the wafer. A wafer may have these residues after a conductor plasma etch process is completed.

3.2.1.5.3 Operations


DI water will not enter the process chamber unless CO_2 is detected. If CO_2 is not detected, the alarm light will flash and an audible alarm will sound. See Figure 3-9. The recipe is **not** interrupted.

Press the alarm light / button on the front of dryer to silence the audible alarm and stop the alarm light from flashing. The alarm light will remain on steady until the end of the recipe. The Control Panel will display a HELP 0004 message when the recipe ends. Clear the fault code by pressing the **CANCEL** key.

3.2.1.5.4 Adjusting Pressure and Flow

In Idle mode, adjust the pressure as required, to a maximum of 38 psi. See Figure 3-10. Once the dryer begins a rinse cycle, adjust the flowmeter as required, up to a maximum of 40 cfh.

3.3 Recipe Programming

3.3.1 Recipe Options Descriptions

When programming a recipe, the following standard selectable items will function according to their descriptions when selected during the programming procedures. See Section 3.3.2 for programming a recipe.

DI H_2O . DI valves will open and DI water will flow into the bowl and rinse the wafers. DI H_2O is only selected in rinse cycles.

NITROGEN. The nitrogen valve will open and nitrogen will flood the bowl. NITROGEN is selected for every rinse and dry cycle.

HEATER. Allows the heaters to function when called upon within the recipe. This function can be used for both rinse and dry cycles. The nitrogen heater will not function unless NITROGEN has also been selected.

STATIC. Nitrogen will flow continually through the static eliminator during both rinse and dry cycles. Nitrogen is ionized when passing through the static eliminator before entering the bowl to neutralize any static charges. Operating the static eliminator is available for dry cycles only and will not function if selected with **DI** H_2O .

RESISTIVITY. Enables the resistivity monitor to measure the cleanliness of the outgoing DI water in megohms as it is drained during rinsing cycles. The rinse cycle will end when both the programmed time and resistivity setpoint have been reached. However, if the time expires prior to satisfying resistivity, the rinse cycle will run indefinitely until it is reached. If resistivity is not reached in the programmed time, the resistivity measurement can be bypassed by pressing **SHIFT 0** (zero) and the next step will begin.

NOTE

The Resistivity feature will function only when the DI $\rm H_2O$ feature is also selected.

3.3.1.1 Viewing an Existing Recipe

Recipes may be viewed before programming or processing wafers. To view a particular recipe, press the **RECIPE** key followed by the number key corresponding to the recipe number you want to view.

3.3.2 Programming a Recipe

GFT recommends the following settings for optimum rinse and dry performance:

- **Step 1 Rinse**: 50 RPM; with DI H₂O, N₂, and Resistivity enabled for 45 seconds.
- Step 2 Rinse: 300 RPM; with DI H₂O, N₂, Heaters and Resistivity enabled for 60 seconds.
- **Step 3 Dry**: 2000 RPM; with N₂, Heaters and Static enabled for 240 seconds.
- **Step 4 Dry**: 500 RPM; with N₂, Heaters and Static enabled for 240 seconds.

NOTE

The following common rules must be followed for optimum dryer performance:

- Nitrogen should be selected for every recipe step, rinse or dry.
- The static eliminator will not function if STATIC is selected with DI $\ensuremath{\text{H}_2\text{O}}$.
- The RESISTIVITY feature functions only when selected with DI $\ensuremath{\text{H}_2\text{O}}\xspace.$
- Before exiting programming mode, ensure that you are at the last step of the recipe or the following steps of that recipe will be erased. You do not need to be in the last recipe to safely exit.
- SHIFT must be off to exit programming mode.

To program a new recipe or change an existing recipe:

- **1.** Before entering programming mode, ensure that the dryer is in Idle mode (i.e., no 'HELP' codes are displayed).
- 2. To enter Programming mode, use the keypad to enter **1600**. The panel will perform a lamp test, then the parameters of step 0 of the current recipe will be displayed.
- **3.** You may have to enter your Passcode if this feature is installed. Ignore this step if the Passcode feature is not installed. See Section 3.2.1.4 for detailed information.
- Enter the recipe number by pressing RECIPE and then the recipe number desired (0-9). For example, to program recipe 0 press RECIPE, then 0. Step 0 of recipe 0 will be displayed.
- 5. To program step 0 of recipe 0 enter STEP, then 0.

6. To enter a resistivity setpoint, press **RESIST** (SHIFT must be off). The current setpoint flashes, indicating the panel is ready to accept a three digit number. The optimal resistivity range is from 00.0 to 18.2 megohms. For example, to enter a value of 10.0, type **100**.

NOTE

Technically, you can enter a megohm value up to 20.0. GFT does not recommend a value greater than 18.2.

- To enter the time value, press TIME (SHIFT must be off). The panel will go blank to indicate it is ready to accept a four digit number (0000 to 9999 seconds). For example, to program a time of 120 seconds, type 0120.
- 8. To enter the rotor (cassette) speed, press **RPM** (SHIFT must be off). The panel will go blank to indicate it is ready to accept a four digit number (minimum and maximum RPM speeds are determined by the dryer's software). For example, to program a speed of 600 RPM, enter **0600**.
- **9.** To select the process options, press **SHIFT** to access the upper function of the dual-function keys.
- Select the process options desired: DI H₂O, NITROGEN, HEATER, STATIC, or RESIST. Ensure each green LED is illuminated on the panel.
- 11. Press SHIFT to exit SHIFT mode.
- 12. To program the next step (or cycle) of the recipe, press STEP followed by the number. For example, to program step 1 of recipe 0 press STEP then 1.
- **13.** Follow the above procedure to program further steps and recipes.

NOTE

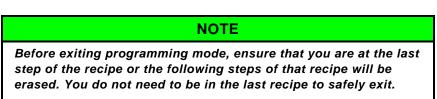
Before exiting programming mode, ensure that you are at the last step of the recipe or the following steps of that recipe will be erased. You do not need to be in the last recipe to safely exit.

14. When every recipe and step has been programmed, press ENTER, ENTER to exit the programming mode. The recipes and steps entered will be saved and will remain in the RAM memory until manually changed.

3.3.2.1 Rinse-and-Dry Recipe Programming Example

The following is a step-by-step routine for programming a typical rinse-*and*-dry recipe. See Section 3.3.2.2 for a typical dry-*only* recipe.

- 1. Enter 1600 to enter the programming mode.
- 2. You may have to enter your Passcode if this feature is installed. Ignore this step if the Passcode feature is not installed. See Section 3.2.1.4 for detailed information.


Rinse Cycle:

- 3. Press RECIPE, then 0 to program recipe 0.
- 4. Press STEP, then 0 to program step 0 of recipe 0.
- 5. Press RESIST, then enter 100 for a resistivity setpoint of 10.0.
- 6. Press TIME, then enter 0120 for a rinse cycle time of 120 seconds.
- 7. Press RPM, then enter 0600 for a speed of 600 rpm.
- 8. Press SHIFT to access the keys in orange.
- 9. Press DI H2O to select DI water.
- 10. Press NITROGEN to select nitrogen.
- **11.** Press HEATER to select heaters.
- **12.** Press RESIST to select resistivity monitoring.
- 13. Press SHIFT.

Dry Cycle:

- 14. Press STEP, then 1 to program step 1 of recipe 0.
- **15.** Press RESIST, then enter 000 as resistivity is not monitored during a dry cycle. (000 needs to be entered for the RAM address to function properly.)
- **16.** Press TIME, then enter 0240 for a dry cycle time of 240 seconds.
- 17. Press RPM, then enter 1200 for a speed of 1200 rpm.
- 18. Press SHIFT to access the keys in orange.
- **19.** Press NITROGEN to select nitrogen.

- **20.** Press HEATER to select heaters.
- **21.** Press STATIC to select the static eliminator.
- 22. Press SHIFT.

23. Press ENTER ENTER to save the settings and exit programming.

3.3.2.2 Dry-only Recipe Programming Example

The following is a step-by-step routine for programming a typical dry-*only* recipe.

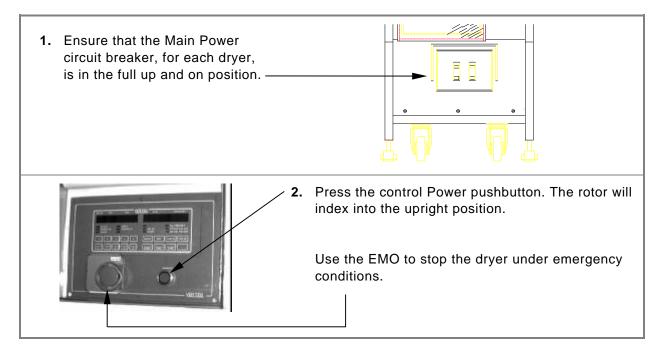
- 1. Enter 1600 to enter the programming mode.
- 2. You may have to enter your Passcode if this feature is installed. Ignore this step if the Passcode feature is not installed. See Section 3.2.1.4 for detailed information.
- 3. Press RECIPE, then 0 to program recipe 0.
- 4. Press STEP, then 1 to program step 1 of recipe 0.
- Press RESIST, then enter 000 as resistivity is not monitored during a dry cycle. (000 needs to be entered for the RAM address to function.)
- 6. Press TIME, then enter 0240 for a dry cycle time of 240 seconds.
- 7. Press RPM, then enter 1200 for a speed of 1200 rpm.
- 8. Press SHIFT to access the keys in orange.
- 9. Press NITROGEN to select nitrogen.
- 10. Press HEATER to select heaters.
- **11.** Press STATIC to select the static eliminator.
- 12. Press SHIFT.

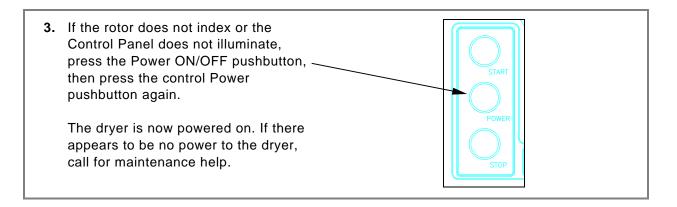
Before exiting programming mode, ensure that you are at the last step of the recipe or the following steps of that recipe will be erased. You do not need to be in the last recipe to safely exit.

13. Press ENTER ENTER to save the settings and exit programming.

This ends Recipe Programming instructions.

3.4 Operating Procedures


The following procedures are GFT standard operating procedures to rinse and dry wafers including safe start up procedures, processing wafers and safe shut down procedures. Your procedures may vary depending on process needs and configured options.


3.4.1 Safe Start Up Procedures (Component Only)

With the power cord, at the back of the controller, connected to the main power source:

- 1. Ensure that the dryer door is closed.
- 2. Press the Power pushbutton on the front of the dryer.

3.4.2 Safe Start Up Procedures (Frame or Cabinet)

3.4.3 Wafer Processing Procedures

CAUTION

LACK OF CASSETTE DURING DRYER OPERATION WILL CAUSE PERMANENT ROTOR VIBRATION, IMBALANCE AND DAMAGE!

During any type of rotor movement, at speeds greater than 100 RPM, requires at least an empty cassette present in the rotor.

- **1.** Ensure that the dryer is powered on, the rotor is indexed correctly, the Control Panel is illuminated.
- 2. Open the door, place the cassette of wafers correctly into the dryer. See Figure 3-11.

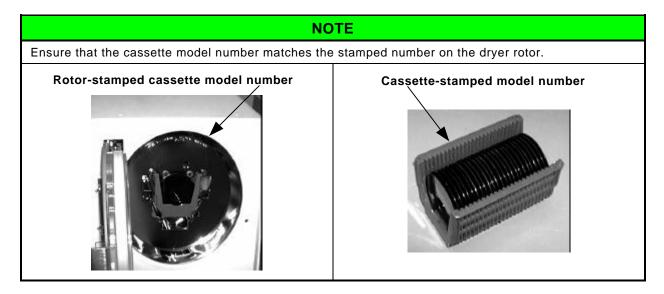


Figure 3-11. Correct placement of cassette in rotor.

- Select a recipe from the stored recipes. To do this, press the RECIPE key on the Control Panel, then press the appropriate numeric key (representing the desired recipe) on the Control Panel. See Section 3.1.4 for key descriptions.
- 4. Press the START pushbutton on the dryer. The dryer performs a series of checks, inflates the door bladder to lock the door, and will spin, rinse, and dry according to the recipe selected.
- **5.** When the recipe is done, the rotor will index to the upright position, open the door and remove the cassette.
- 6. To process other cassette of wafers, start at step 1 of this procedure.

This ends the standard wafer processing procedures.

3.4.4 Emergency Shutdown Procedure

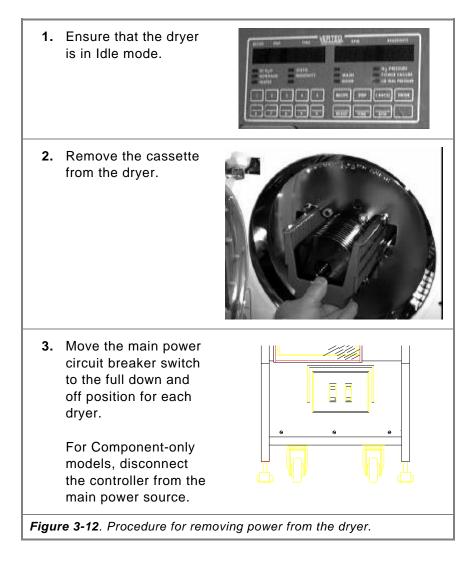
CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

The following GFT standard emergency shut down procedure may not apply to your dryer. Contact your supervisor or system maintenance personnel for instructions on shutting down your dryer.

- 1. Press the red EMO "twist and lock" (Emergency Power Off) pushbutton to disconnect the main power supply to the dryer downstream of the main power circuit breaker.
- 2. To restore power to the dryer: twist the EMO pushbutton while pulling out, then press the POWER ON pushbutton.

3.4.4.1 Emergency Wafer Retrieval Procedure


As a safety feature to protect the operator from possible injury and the wafers from accidental contamination, the door cannot be opened once a process cycle has started. The door can only be opened when the final step of the recipe has been completed or the recipe has been interrupted and the rotor indexed.

In the event the dryer loses power during a cycle and there is a need to remove the wafers before power is restored, the door can be manually unsealed and opened by performing the following:

- 1. Turn off the facility CDA pressure to the dryer.
- **2.** Press the relief valve located adjacent to the static eliminator power supply on the right side of the dryer.
- **3.** Manually rotate the cassette to the upright position to avoid spilling the wafers during cassette removal.
- 4. Remove the cassette.

3.4.5 Safe Shut Down Procedures

Refer to Figure 3-12 for the shut down procedure when the SRD will not be operated for an extended period of time or when power needs to be removed for maintenance purposes.

3.5 Programmable Codes

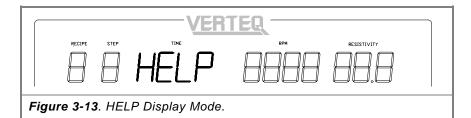

These codes are entered onto the Control Panel as the first step in programming certain features. If the optional feature Passcodes are installed on your dryer, enter the passcode after you've entered the programmable code.

Table 3-1. Codes used to program the dryer.

Code	Function / Description
1600	Program Recipe - Used to program rinse and dry parameters for recipes.
1601	Wash Warning - Used to set the timer and counter in order to illuminate the WASH indicator on the keypad, warning the operator to wash the bowl. The WASH indicator is extinguished when DI water is used in a recipe. Pressing <shift>, then <time> and enter the number of hours (0-9999), the machine can remain idle before the WASH light is illuminated. Pressing <shift>, then <rpm> and enter the number of cycles (0-9999) the machine can run without DI water before the WASH light is illuminated. Note: Setting both hours and cycles to "0" disables Wash Warning.</rpm></shift></time></shift>
1602	Display Software Revision - Information is displayed on the keypad in the following format: 16 VVV RR, where 16 is the type of software, VVV is the version, and RR is the revision number. The display clears after a few seconds. Refer to the Preface section to interpret these values.
1603	Display status of input sensors - Using the keypad readouts, displays the status of the following input sensors: 0 = Sensor Off 1 = Sensor On Recipe = Not Used Step = Footswitch Time (1000) = Not used Time (100) = Door open Time (10) = Door closed Time (1) = Bladder pressure RPM (1000) = N ₂ Pressure RPM (1000) = Start pushbutton RPM (10) = Stop pushbutton (Normally closed) RPM (1) = Not used Press CANCEL to exit this feature
123	Cycle stop indication - When entered, (after the problem that caused the interruption is corrected), process information is displayed indicating when the machine last stopped. This options displays recipe number ,step, time remaining, RPM and recipe options (DI, N ₂ , static, heaters, and resistivity). Press CANCEL to exit this feature.

3.6 Fault (HELP) Codes

When an alarm occurs, the dryer will sound the Sonalert speaker and post a Fault code on the Control Panel. The word '**HELP**' will be displayed under the **TIME** display and the fault or HELP code number will be displayed under the **RPM** display. Table 3-2 outlines the alarm type, the device affecting the alarm, and any applicable operator recovery procedures. Alarm types will only occur on your system if the affected option is installed or the dipswitch of a specific option is configured wrong.

NOTE

More than one fault can occur at a time. If this occurs HELP codes will be added together. For instance, if Index Failure *and* RPM Too High alarms occur at the same time, the HELP code will be 0030. GFT recommends that these alarms be resolved in order of lowest digit first. This means that the operator should attempt to recover from the Index Failure alarm first. Refer to Table 3-2 for the HELP codes and recovery procedures.

HELP Code	Fault Description	Operator Response
0001	Power Failure	Correct the problemPress START to clear the Control Panel.
0002	Heater Failure	Correct the problemPress CANCEL to clear the Control Panel
0004	DI Flow	Correct the problemPress CANCEL to clear the Control Panel
0010	Index Failure	 Correct the problem Press START to clear the Control Panel.
0020	RPM Too High	Correct the problemPress CANCEL to clear the Control Panel.
0100	N ₂ Pressure Failure	 Correct the problem Press CANCEL to clear the Control Panel.
1000	Door Open in Run (During Processing)	 Correct the problem Press CANCEL to clear the Control Panel.
2000	Bladder Pressure Fail	 Correct the problem Press CANCEL to clear the Control Panel.

Table 3-2. Fault (HELP) Codes.


HELP Code	Fault Description	Operator Response
4000	Door Open Error (While <i>not</i> in Process Mode) (1600-55 A only)	 Correct the problem Press CANCEL to clear the Control Panel.
8000	Door Close Error (While <i>not</i> in Process Mode) (1600-55 A only)	 Correct the problem Press CANCEL to clear the Control Panel.
8888	Loss of Speed Feedback While Running	Correct the problemCycle power (Off then On).

3.6.1 Faults with No Codes

Problem	Possible Cause	Suggested Solution
Wafers wet and/or with water spots when removed	Faulty heaters	Call for Maintenance
Keypad flashing or recipe information disappearing	Bad RAM battery	Call for Maintenance
TIME display flashes between zeros and dashes, and the RESISTIVITY display flashes between the actual and programmed resistivity levels	Resistivity level has not been reached in the programmed time	Call for Maintenance
Door opens/closes slow	Low CDA supply pressure	See Section 4.6, Door Position Adjustment Procedure
Door water leak	Door seal insufficient	See Door Adjustment Procedure – Maintenance section
High particle count	Various	See Section 4.17, Particle Troubleshooting Procedure

3.7 Controller Card Dipswitch Settings

Dipswitches are mounted on the edge of the controller card, Figure 3-14, and are accessible through an opening in the controller enclosure. They are used to set several system parameters and enable installed optional features. The dipswitches are factory set and should not be changed without assistance from a GFT Field Service Representative.

To reset dipswitch settings, disconnect power before altering dipswitch settings. Remove the black plug in the side of the controller enclosure to access the dipswitches (Figure 3-14). The switches are numbered 1 through 8 on the switch body. Tables 3-3 and 3-4 provide information on the correct settings for each software version and revision. Refer to the Preface section for instructions in finding your dryer's software version.

For Software Types:						
Dryer		Vers	sion No.	Revision No.		
1600		-	- 005	05		
1600		-	- 007	01		
1600		-	- 008	01		
1600		-	- 009	01		
1600		- 010		01		
1600		- 011		01		
Dipswitch No.	Po	sition		Function		
1		Up	50Hz			
I	l	Down	60Hz			
2		Up Auto Door				
2		Down	Manual Door			
2 *		Up	End of Process Alarm Enabled			
3 *		Down	End of Process Alarm Disabled			
4		Up	Clean Coil Se	ensor Enabled		
4		Down				

Table 3-3. Dipswitch settings for the following software versions.

5	Up	N ₂ Blow until Door Close		
5	Down	N ₂ Blow for 30 seconds		
C	Up	Warning Boat Sensor Enabled		
6	Down	Warning Boat Sensor Disabled		
7	Up	4800 Baud		
	Down	9600 Baud		
0	Up	Idle 10 minutes, then go to Recipe 0		
8	Down	Stay at last recipe ran		
* No.3: If optional board installed, additional audible Sonalert				
notification to the operator.				

 Table 3-4. Dipswitch settings for the following software versions.

For Software Types:					
Dryer		Version No.			Revision No.
1600		-	- 004		01
1600		-	- 005		03
Dipswitch No.	Р	osition		Func	tion
1		Up Down	50Hz 60Hz		
2		Up Down	Auto Door Manual Door		
3 *	Up Down		End of Process Alarm Enabled End of Process Alarm Disabled		
4	Up Down		Clean Coil Sensor Enabled Clean Coil Sensor Disabled		
5	5 Up Down		DI H ₂ O Flow Sensor Enabled DI Flow H ₂ O Sensor Disabled		
6		Up Down	SECS II Enat SECS II Disa		
7 & 8	S	witch 7	Switch 8		Baud Rate
SECS II Communication	Down Down Up Up		Down Up Down Up		9600 4800 2400 1200
* No.3 : If optional board installed, additional audible Sonalert notification to the operator.					

3.7.1 Controller Card LEDs

Fourteen LEDs each are mounted on the controller I/O and CPU boards for diagnostic purposes. See Table 3-5.

Table 3-5. I/O and CPU Board Controller LED Functions.

I/O Board Cont	roller LED Functions	CPU Board Con	troller LED Functions.
CR# = LED	Function	D#= LED	Function
CR1		D4	Index
CR2		D5	Speed
CR3	Index	D6	
CR4	Power Fail OK	D7	Stop N/C
CR5	Nitrogen	D8	Start N/O
CR6	DI Water	D9	N ₂ Pressure OK
CR7	Door Bladder	D10	Bladder OK
CR8	Motor Run	D11	Door Open
CR9	Heater	D12	Door Closed
CR10	Close Door	D13	Foot Switch N/O
CR11	Open Door	D14	
CR12	Alarm	D15	Heater
CR13		D16	
CR14	Static Eliminator	D17	

3.8 Nitrogen Regulators

The dryer has two independently plumbed nitrogen lines: one for bowl nitrogen and one for secondary nitrogen or CDA (clean dry air). The secondary line delivers nitrogen to the rotor positioner cylinder and the auto-door cylinder.

The system nitrogen line consists of two separate circuits: the bowl circuit and the bladder circuit. The bowl circuit delivers nitrogen to the bowl, labyrinth seal, and the static eliminator. Nitrogen enters the circuit through regulator RG1. Flow to the clean coil and throughout the rest of the circuit is monitored by pressure switch PSW1.

The bladder circuit controls the flow of nitrogen to the bladder that seals the door. Nitrogen enters this circuit through RG2. Flow to the bladder is monitored by pressure switch PSW2. Both of these lines are designed to operate at specific pressures and are set at the factory. Do not adjust the regulators except to return them to specification.

NOTE

CDA may be used in place of nitrogen for the rotor positioner cylinder and auto-door cylinder. The secondary line delivers CDA or nitrogen to the auto-door only on the 1600-55A.

WARNING

REGULATORS SET INCORRECTLY CAN CAUSE INJURY!

Regulator RG2 (door bladder) must be operated at a dynamic pressure of 21 psi. The bladder could be damaged if the regulator is set too high, and the bladder will not inflate if the regulator is set too low. Either circumstance could lead to operator injury.

3.9 Valve Bracket Assembly

The normal condition of the valve refers to the de-energized state when power is OFF.

Label	Description
V1	2-way manual relief valve, used to deflate the door bladder if the unit lost power during a cycle.
V2	A 2-way Teflon check valve, used to purge the DI manifold of excess water during a dry cycle.
٧3	A 2-way Teflon flow control valve, used to control water flow during a rinse cycle.
V101	A 2-way NC solenoid valve, used to control the flow of system N_2 to the clean coil, labyrinth seal, and static eliminator.
V102	A 3-way NC solenoid valve, used to control system water flow. The standard valve will deliver 1.75 gpm under a dynamic pressure of 25 psi minimum @40 psi maximum. The optional high pressure valve will deliver 1.75 gpm under a dynamic pressure of 25 psi minimum @70 psi maximum.
V103	A 2-way NC solenoid valve, used to ensure that the bladder remains inflated during a power failure. With the power on the solenoid is open, allowing N_2 to flow to the bladder. If power is off the solenoid closes, keeping the existing pressure on the bladder.
V104	A 3-way NC solenoid valve, used to control the flow of N_2 to the door seal.
V105	A 3-way NC solenoid valve, used to control the flow from RG3 to the auto-positioner cylinder.

4 MAINTENANCE FREQUENCIES and PROCEDURES

This section includes the following maintenance procedures relating to all hardware types. Not all hardware types will be on any one dryer. Procedures in this section pertaining to hardware that is not on your dryer are to be ignored.

- PM Frequency (Section 4.1)
- Static Eliminator Verification (Section 4.2)
- Nitrogen Filter Replacement (Section 4.3)
- Bowl and Motor Change (Section 4.4)
- Resetting the Clean Coil Thermostat (Sec. 4.5)
- Door Position Adjustment (Section 4.6)
- Labyrinth Seal Cleaning (Section 4.7)
- Hub Installation (Section 4.8)
- Door Bladder Replacement (Section 4.9)

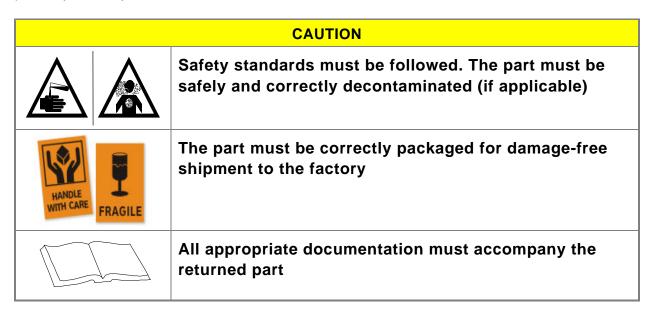
- Rotor Removal and Installation (Section 4.10)
- Retaining Bar Tube Replacement (Sec. 4.11)
- PFA Rod Maintenance (Section 4.12)
- Bowl Heater Verification (Section 4.13)
- Cleaning the Rinse/Dryer (Section 4.14)
- Resistivity Probe and Monitor Test (Sec. 4.15)
- CO₂ Injection Procedures (Section 4.16)
- Particle Troubleshooting (Section 4.17)

How to Reach GFT Customer Support

GFT is committed to assisting you in your goal of achieving self-sufficiency with all of your GFT batch process systems. Your system's Customer Documentation Package is provided to support you in assessing and resolving operation and maintenance questions. If the documentation does not address your specific questions involving Hardware, Software, or Process related questions, please contact your local GFT representative.

If you have no local GFT representative in your area, please contact the Batch Customer Support Team at:

Goldfinger Technologies, LLC


1241 E. Dyer Rd., Suite 100 Santa Ana, CA USA 92705-6533 Phone: (714) 445-2000 Fax: (714) 445-2204

From 8:00 a.m. to 5:00 p.m., PST, Monday through Friday

Please be at the equipment, if possible, and be prepared to give a detailed description of the problem.

How To Return Service Parts for Repair

For efficient processing and quick turnaround, it is highly important when returning service parts for repair that the following three cautionary items be adhered to or timely disposition of the failed part may be delayed.

This procedure is a guideline to follow when resolving failed parts:

- 1. Determine if the part to be repaired is under warranty. If the part is under warranty call your local GFT Service Representative. If the part is not under warranty, call the GFT Sales department.
- 2. If GFT determines that the failed part does not need to be returned, go to step 4 of this procedure. If GFT determines that the failed part is to be returned for repair, you will be given a Return Authorization Number (RA#). A packet of information will also be electronically mail to you. This packet of information includes:
 - Instructions to safely decontaminate the part
 - Instructions to correctly package the part for shipment
 - Required documentation to be filled out by you, including:
 - The part's **Chemical History** a form declaring the type of process chemicals the part has been exposed to.
 - Discrepancy and Corrective Action Report (D–CAR) instructions and form that captures information about the part and how it failed and what you and GFT want corrected.
- **3.** Ensure the part is decontaminated and packaged correctly. Include the Chemical History form and a copy of the D–CAR with the part. Also electronically forward a copy of the D–CAR to the Batch Customer Support Team for quick disposition of a replacement part.
- 4. Parts Not Returned for Repair. Information about the failed part needs to be collected even though the part is not to be returned. A Discrepancy and Corrective Action Report (D–CAR) needs to be filled out and returned (by e-mail) to the Batch Customer Support Team for quick disposition of a replacement part.

4.1 **Preventive Maintenance Frequency**

4.1.1 Daily Maintenance

- 1. Clean the door seal with DI water and a lint-free cloth once per shift. Ensure cloth particles do not transfer onto the seal, do not use excessive pressure when wiping.
- 2. Inspect the door bladder seal for nicks, wear, and proper positioning. Replace the door bladder if necessary. See Section 4.9, *Door Bladder Replacement Procedure*.

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Do not use isopropyl alcohol (IPA) inside the bowl because it can damage the door bladder.

- **3.** Clean the front shroud, door and hinge with IPA and a lint-free cloth once per shift. See Section 4.14, Cleaning the dryer Procedure.
- 4. Check that the correct carrier is being used in the dryer.
- **5.** Verify the resistivity level reaches the recommended level.
- 6. Check for excessive vibration during the first cycle of a shift.
- 7. At the end of a dry cycle, verify that the wafers are completely dry.
- 8. Verify that the door is properly aligned. Verify that the bladder does not touch the bowl and that the door is centered with respect to the bowl. See Section 4.16, Door Position Adjustment Procedure.
- **9.** Verify that the correct recipe is programmed.

4.1.2 Weekly Maintenance

1. Check the Teflon sheath on the rotor's retaining bar. If the sheath has severe ridges or indentations, rotate the sheath 1/4 turn so an unmarred portion of the sheath faces the wafers. The sheath can be rotated three times before it must be replaced. Perform this service after running a dry cycle so the sheath will be warm and easily manipulated. See Section 4.11, Retaining Bar Tube Replacement Procedure.

NOTE

The rotor will have Teflon sheaths or PFA rods depending upon the rotor type. Refer to the table in the Retaining Bar Tube Replacement Procedure.

- 2. Check that all rotor mounting screws are secure.
- **3.** Run a complete cycle to check the operation of the dryer.
- 4. Check the dynamic pressures of all the facilities. Read the pressures on the gauges at the back of the dryer while running a dry cycle.
- 5. Check all plumbing hardware for leaks.
- **6.** Verify that the N_2 heater is heating.

4.1.3 Monthly Maintenance

1. Rotate the PFA rods. If necessary, perform the 1600-55 *PFA Rod Maintenance Procedure*, Section 4.12.

NOTE

The rotor will have Teflon sheaths or PFA rods depending upon the rotor type. Refer to the table in Section 4.11, *Retaining Bar Tube Replacement Procedure*.

- 2. Check all electrical wiring and connectors for wear and proper connections.
- **3.** Inspect the process bowl and rotor for stains. If necessary, clean with a solution of DI water, 30% H₂O₂, and a small amount of IPA.
- 4. Check the index-sprocket set screws and location of the optical sensor board. The sprocket should be in the middle of the sensor. Loosen the sensor mounting screws and adjust the sensor if necessary.
- 5. Check the drain box and resistivity probe for contamination.
- Read the secondary voltage of the N₂ transformer. Connect the leads of a digital multimeter (DMM) to the two large terminal connectors on the left side of the rinser/dryer. Run a dry cycle. The DMM reading should be 3.2 VAC to 5 VAC.
- 7. Check the DI valve. During a dry cycle, look for signs of DI water in the line that supplies the DI manifold. If there is flow during the dry cycle, turn the power off. Power on the unit. Watch the DI nozzles while the N2 purge is on. If water comes from the nozzles, the DI valve may need replacement.
- 8. Check the clean coil thermostat interlock. During a rinse or dry cycle remove the spade connector on the white wire on the KA relay. This should disable the dryer and prohibit further operation. There should be an N₂ pressure failure error message on the keypad.

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Do not use isopropyl alcohol (IPA) inside the bowl because it can damage the door bladder.

4.1.4 Semi-Annual Maintenance:

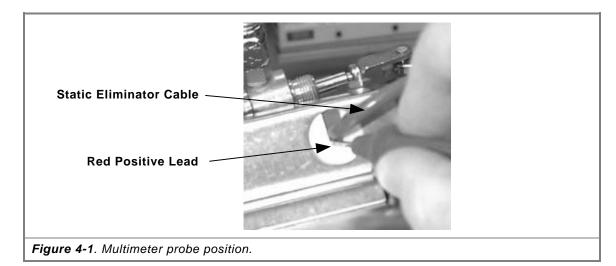
- 1. Remove and clean the labyrinth seal plate. See Section 4.7, Labyrinth Seal Cleaning Procedure.
- **2.** Replace the rotor mounting screws.
- **3.** Check the static eliminator with a hand-held digital multimeter. See Section 4.2, Static Eliminator Verification Procedure.
- **4.** Tighten the hub screws, shock mounts, and bowl mounts.
- **5.** Verify the dryer rinses within 2 megohms of the resistivity of the incoming DI water. If it does not, see Section 4.15, Resistivity Probe and Monitor Test Procedure.

- 6. Check the bowl heaters. Verify they are securely fastened to the bowl. Use a digital temperature meter to measure the temperature of both patch heaters. See Section 4.13, Bowl Heater Verification Procedure.
- 7. Check the voltage on the system terminal block (113 120 volts). Check the voltage drop when the system is turned on. The voltage should never drop below 109 volts.
- 8. Check all assemblies and subassemblies for general wear.
- 9. Ensure the connections on the clean coil transformer and clean coil assembly are tight.
- **10.** Remove and replace the N₂ and DI water filters. Wipe the inside of the filter housing with IPA before installing the new filter. See Section 4.3, Nitrogen Filter Replacement Procedure.
- **11.** Check the hub spacing with the supplied spacing tool. If your rotors are 1" to 5", the spacing should be .050 inch. If you have a 6" rotor the spacing should be .080 inch. (Refer to the Hub Installation Procedure)
- **12.** Check the door bladder. Remove and replace it if signs of corrosion or stretching are apparent. Clean the groove in the door with DI water and a lint-free wipe before installing the new bladder. See Section 4.9, Door Bladder Replacement Procedure.
- **13.** Check all the HELP code interlocks.
- 14. Verify that the door bladder relief valve is functioning properly. While the unit is in the middle of a cycle, press the POWER button and allow the rotor to come to a halt. Pull on the door handle. The door should not open. Press the POWER button to turn the unit back on and press the STOP button to clear the power failure message.
- **15.** Clean the motor commutator and inspect the brushes for excessive wear.

THIS PAGE INTENTIONALLY LEFT BLANK.

4.2 Static Eliminator Verification Procedure

The following procedure guides a technician to verify a good operating static eliminator.


4.2.1 Tools Required

- Digital Multimeter
- Phillips screwdriver

4.2.2 Procedure

WARNING DANGEROUS VOLTAGE IS PRESENT! Hazardous voltages exist. Use caution around exposed circuits. Check area for exposed contacts prior to reaching into the dryer to take measurements. To ensure operator, equipment, and product safety, follow the instructions and use care when operating this equipment.

- **1.** Remove the cover of the dryer.
- 2. Select a recipe that includes a dry cycle step with the static eliminator.
- **3.** During the dry cycle step, place the red positive lead of the digital multimeter just below the static eliminator cable. The positive lead should touch the transducer plate.
- 4. Connect the black negative lead to the frame or a ground.
- **5.** When the static eliminator is on, the digital multimeter will indicate a voltage of 5 to 15 VAC. When the static eliminator is off, there will not be any measurable voltage.

- 6. If the static eliminator does not read correctly, change out the static eliminator power supply (GFT P/N 4114388).
- 7. Reinstall the cover of the dryer.

THIS PAGE INTENTIONALLY LEFT BLANK.

4.3 Nitrogen Filter Replacement Procedure

CAUTION

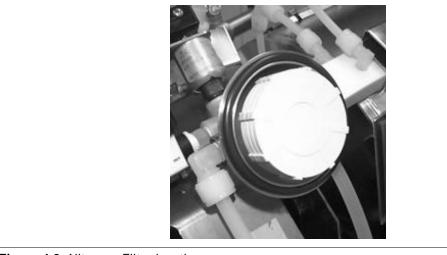
POTENTIAL PRODUCT OR EQUIPMENT DAMAGE! Always wear clean gloves when handling the nitrogen filter to avoid contamination.

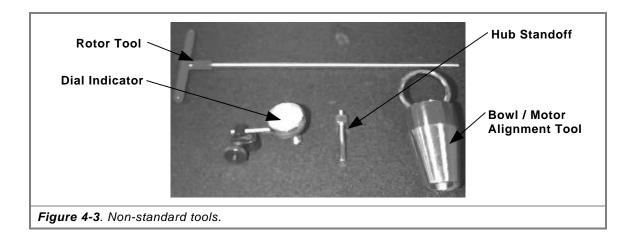
4.3.1 Tools Required

- Phillips screwdriver
- Clean gloves

4.3.2 Procedure

- 1. Follow Section 3.4.5, Safe Shut Down Procedures.
- **2.** Turn off the CDA and N_2 supply to the dryer.
- **3.** Remove the cover from the dryer.
- 4. Unscrew the filter cover clamp. See Figure 4-2.
- 5. Remove the filter cover.
- 6. Remove and discard the filter.
- 7. Install the new filter onto the male fitting.
- 8. Ensure that the O-ring is properly seated.
- 9. Reinstall the filter cover and filter cover clamp.
- **10.** Finger tighten the clamp.
- **11.** Reinstall the cover onto the dryer.



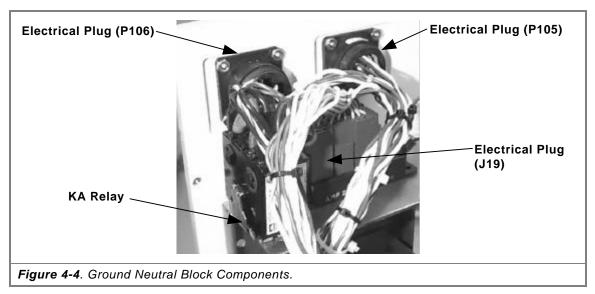

Figure 4-2. Nitrogen Filter location.

THIS PAGE INTENTIONALLY LEFT BLANK.

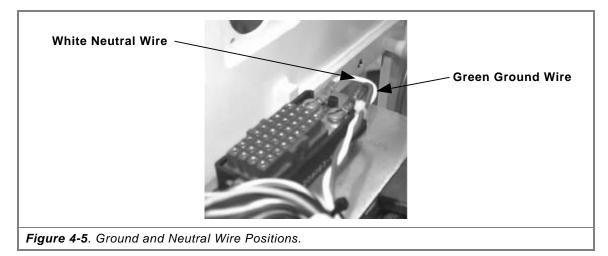
4.4 Bowl and Motor Change Procedure

4.4.1 Tools Required

- #2 Phillips Screwdriver
- 3/16" Flat Blade Screwdriver
- 10-Inch Adjustable Wrench
- Pliers
- Hex Wrench Set
- 3/8" Ratchet Set With Sockets
- 7/16" Combination Wrench (Long "T" Handle)
- 5/16" Combination Wrench (Long "T" Handle)
- RTB 10 (14302003) 5/16" T-Handle Ratchet (SNAP-ON)
- RTB 14 (14302003)7/16" T-Handle Ratchet (SNAP-ON)
- Rotor Tool (GFT P/N 4118693) See Figure 4-3
- Dial Indicator (GFT P/N 4120610) See Figure 4-3
- Hub Stand-Off (GFT P/N 1074975.1) See Figure 4-3
- Motor / Bowl Alignment Tool (GFT P/N 1076677.1) See Figure 4-3
- Hub Spacing Tool (GFT P/N 1066322.1)


4.4.2 Recommended Spare Parts List

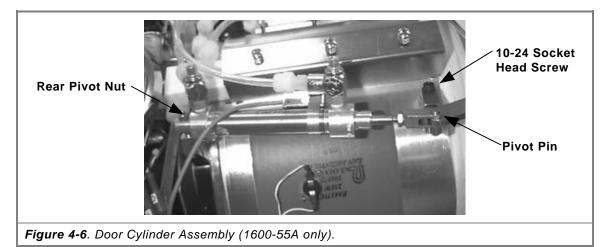
PART DESCRIPTION	GFT P/N	QUANTITY
SRD 1600 Series Bowl With Heater Pads	1074599.1	1
Static Eliminator Assembly	1069254.501	1
Gasket, Static Eliminator Assembly	1059696.1	1
N ₂ Manifold	1065682.1	1
Gasket, N ₂ Manifold	1065681.1	1
DI Manifold	1062537.1	1
Gasket, DI Manifold	1062531.1	1
Bracket, DI Manifold	1062552.1	1
DI Nozzles (Fan)	4117876	6
DI Nozzles (Cone)	4116484	6
N ₂ Labyrinth Seal Plate	1062546.1	1
Front Cover w/Gasket (LH)	1071667.3	1
Front Cover w/Gasket (RH)	1071667.1	1
Front Cover w/Gasket (Universal)	1075470.1	1
Door (LH / RH)	1067661.3	1
Hub	1062563.1	1
Rotor (SRD Dependent)	SRD Dependent	1
N ₂ Filter (Millipore, Wafergaurd)	4118199	1
Door Seal (Bladder)	1064788.1	1
Front Motor (Shock) Mount(s)	4116634	2
Rear Motor (Shock) Mount(s)	4116635	6


The above recommended list of parts will be inspected at each bowl/motor change and a decision will be made by maintenance personnel as to the part's replacement or re-use, considering silicon contamination. The final decision as to the disposition of each part will be made by the customer.

4.4.3 Procedure

- 1. Follow Section 3.4.5, *Safe Shut Down Procedures*.
- 2. Turn off all facilities: DI, nitrogen, and CDA to the system.
- **3.** Remove the cover from the dryer.
- **4.** Disconnect all facility lines from the rear panel.
- **5.** Remove all Teflon lines between the rear panel, valve bracket assembly, and the index cylinder.
- 6. Remove electrical plug (J19) from ground neutral block at the left-rear of system.
- 7. Disconnect white (neutral) and green (ground) wires from the ground neutral block.

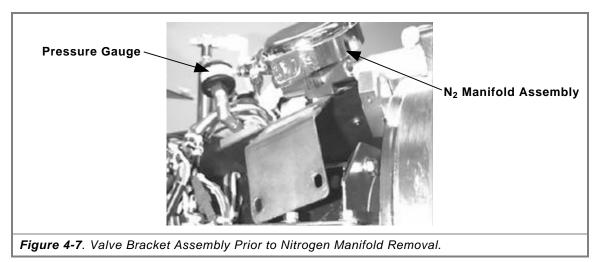
8. Record the position of each wire.


9. Remove the "KA" relay from the mounting bracket by carefully prying open the left and right clamps.

NOTE

Do not disconnect wires from the "KA" relay.

- **10.** Disconnect controller cables from rear panel of the dryer.
- **11.** Disconnect all facilities lines from the rear panel.
- **12.** Remove the screws (4) from the (P105) and (P106) connectors.
- **13.** Remove the lower (3) and upper Phillips screws (2) securing the rear panel to the base mounting assembly.
- **14.** Remove the rear panel and set it off to the side.
- **15.** Disconnect the door bladder tubing from the bladder relief valve.


- **16.** Disconnect tubing from the DI water spray manifold located on the bottom right of the bowl.
- **17.** Disconnect the N_2 tubing from the labyrinth seal plate.

- **18.** Remove the pivot pin connecting the door hinge to the air cylinder (1600-55A only).
- **19.** Remove the 10-24 socket head screw that connects the door cylinder assembly to the bowl (1600-55A only).
- **20.** Remove the nut on the rear pivot and remove the door air cylinder assembly from the bowl (1600-55A only).
- **21.** Disconnect bullet connectors labeled "C" and "P16" (1600-55A only).
- **22.** Disconnect the clean coil N_2 tubes (2).
- **23.** Disconnect bowl heater pad thermal switches (J12) and snap switch (J18).
- **24.** Disconnect the electrical plug (J5).
- **25.** Remove and label switches (power, start, and stop).
- **26.** Disconnect the wires from the door microswitch.
- **27.** Disconnect wires (6 awg) from the nitrogen clean coil assembly.
- **28.** Remove the clean coil cover by removing the thumb screws (2) located at the top and bottom of the clean coil assembly and remove the clean coil assembly and bracket.
- **29.** Remove the alarm board (if applicable).
- **30.** Remove the number 12, 13, and 14 wires from the alarm board (if applicable).
- **31.** Remove the 7/16" hex head bolts (3) that secure the valve bracket assembly to the motor housing.
- **32.** Relocate the valve bracket assembly to the right side of the dryer without removing wires.

NOTE

The valve bracket assembly is moved to the right side of the unit temporarily so the pressure meter does not interfere with removal of the nitrogen manifold assembly.

- **33.** Disconnect the N_2 tubes (3) from the N_2 manifold.
- **34.** Loosen retaining hardware and remove N₂ manifold and filter.
- **35.** Move the valve bracket assembly to the left side without removing any wires.
- **36.** Use a large tie-wrap to support the weight of the valve bracket assembly to alleviate any stress on the wires.

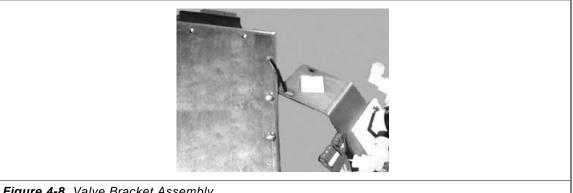


Figure 4-8. Valve Bracket Assembly.

- **37.** Remove the rotor from the process bowl. See Section 4.10, *Rotor Removal and Installation Procedure.*
- **38.** Remove the hub from the motor axle by loosening the 1/8" hex screws (2).
- **39.** Remove the labyrinth seal plate by removing the screws (8).
- **40.** Disconnect the optical sensor board cable (J20).
- **41.** Disconnect the motor power supply plug (J15).
- **42.** Remove the 7/16" hex head nuts (6) and 7/16" hex head bolts (2) (top side) securing the motor bracket to the motor housing.
- **43.** Disconnect the static eliminator high voltage cable (red) from the static eliminator power supply.
- **44.** Carefully lift out the motor bracket assembly.

45. If installed, record the number and location of spacers used between the motor bracket assembly and the shock mounts. This will aid in the alignment of the new bowl and motor.

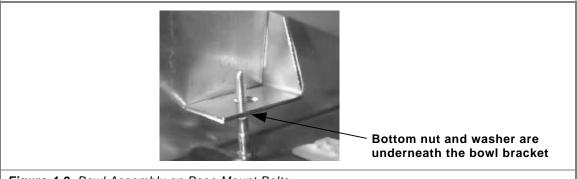


Figure 4-9. Bowl Assembly on Base Mount Bolts.

- **46.** Remove the upper bowl mounting nuts (2) (1 on each side of bowl) located behind the front panel.
- **47.** Do not move the position of the lower jamb nuts on the mounting brackets. Maintaining original positions of the jamb nuts ensures accurate re-alignment of the bowl.
- **48.** Cut the wires off the bowl heater pads at the thermostat switches, keeping the leads as long as possible, and install bullet connectors if not already done.
- **49.** Remove the 5/16" hex head bolts (5) securing the rear bowl to the motor housing.
- **50.** Remove the 1 3/4" vinyl tubing from the drain box.
- **51.** Remove the bowl assembly from the base mount assembly.
- **52.** Remove and replace all eight shock mounts, regardless of their condition. Six of the shock mounts have threads on both sides and two of them have threads on only one side.
- **53.** Remove all manifolds, tubing and hardware from the bowl assembly.
- **54.** Remove the hinge and door panel assembly from the bowl assembly.
- **55.** Save all tubing, plumbing fittings, and hardware that are re-usable.
- **56.** Inspect the DI, N₂, and static eliminator manifolds for contamination or damage.
- **57.** Replace any components that show signs of wear or silicon impregnation.

4.4.4 Bowl / Motor Installation

- 1. Install all manifolds on new bowl assembly prior to installation. When installing new manifolds, the gaskets must be aligned and tightened down properly to prevent the gaskets from protruding into the process chamber.
- **2.** Install the 1 3/4" vinyl tubing onto the bowl.
- **3.** Set the bowl into place on the base assembly and install 5/16" hex head bolts (5) into the rear of motor housing and bowl.
- 4. Connect the drain tubing to drain box.
- 5. Install the top nuts on the base mount bolts but do not tighten.

- **6.** Tighten the 5/16" hex head bolts (5) until the bowl and motor mount are flush.
- 7. Install the motor assembly onto the motor mount.
- 8. Center the motor assembly with respect to the bowl.
- **9.** Install the rear 7/16" nuts (2) and the front 7/16" bolts (2).

NOTE

The remaining nuts (4) are not installed at this time so that the shock mount threaded posts are visible with respect to the motor bracket.

- **10.** Verify that the motor bracket assembly does not touch the threaded posts of the motor shock mounts.
- **11.** Ensure that the labyrinth seal plate O-rings (2) are in place.
- **12.** Carefully install the labyrinth seal plate into the rotor.

NOTE Verify that the groove in the seal plate is pointed down.

13. Center the labyrinth seal plate with respect to the bowl and tighten the screws.

4.4.5 Initial Bowl and Motor Alignment

- 1. Install the motor/bowl alignment tool, pushing it in as far as possible to center the bowl and labyrinth seal plate to the motor shaft.
- 2. With the motor/bowl alignment tool in place, inspect the front and rear shock mounts to determine if there is space between the motor bracket and the shock mounts.
- **3.** If necessary, add shims to the front or rear shock mounts to achieve proper vertical alignment of the bowl and motor. Install the shims between the motor bracket and the top of the shock mount.

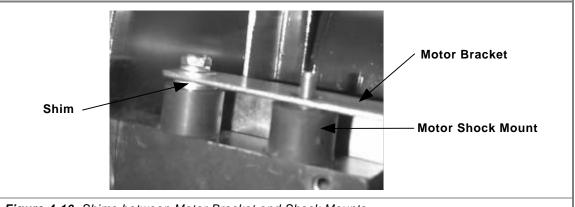
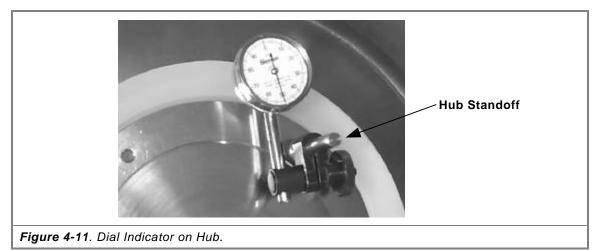


Figure 4-10. Shims between Motor Bracket and Shock Mounts.

- **4.** With the motor/bowl alignment tool in place, center the motor bracket assembly on the motor mount with respect to the bowl to achieve a gross horizontal alignment.
- 5. Verify the motor bracket assembly is not touching the threaded posts of the shock mounts.

NOTE

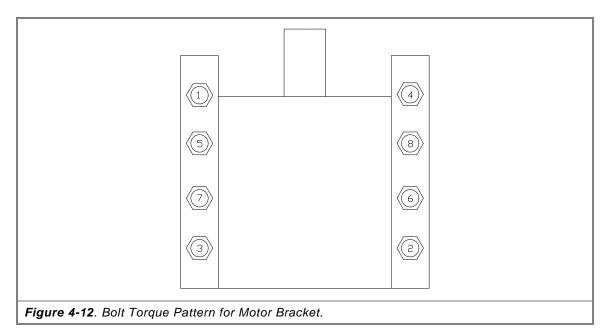

The motor bracket assembly does not need to be centered with respect to the threaded posts of the shock mounts. The motor bracket assembly may be moved along the motor axis to keep the bracket from touching the shock mount threads.

- 6. Tighten the rear 7/16" nuts (2) when the shims are in place, the motor bracket assembly is centered along the horizontal axis, and the shock mount threads are not in contact with the motor bracket.
- 7. Remove the bowl/motor alignment tool.
- 8. Install the hub key into the slot on the motor axle.
- **9.** Install the hub so that it is close to but not touching the labyrinth seal plate.
- **10.** Tighten the set screw that is located over the hub key to hold the hub in place.

NOTE

Verify that the key is flush with the hub.

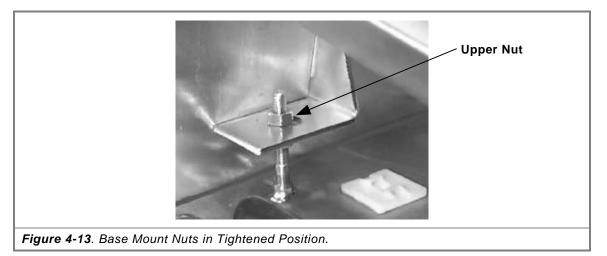
- **11.** Install the hub stand-off onto any of the hub mounting holes.
- 12. Install the dial indicator onto the hub stand-off.


13. Tighten the dial indicator to the hub standoff when the dial indicator is in the middle of it's range.

4.4.6 Horizontal Bowl/Motor Alignment

- **1.** Set dial indicator to "0" at the left side of the hub / seal plate.
- 2. Check the clearance at the right side of the hub / seal plate.
- 3. The variance between left and right must be no more than +/- 0.010".
- **4.** If right side is more positive than +0.010", push the right side of the motor toward the front of the dryer.
- **5.** If right side is more negative than -0.010", push the right side of the motor toward the rear of the dryer.

NOTE	
It may be necessary to perform the horizontal alignment section of the procedur times to ensure proper alignment. Move the motor assembly a little at a time in direction so that the opposite side does not get out of alignment.	


- **6.** Install the remaining 7/16" nuts (4) onto the motor mount.
- **7.** Torque motor shock mounts to 14 inch-lbs., see Figure 4-12. Verify that the horizontal alignment is maintained after the nuts on the motor shock mounts are torqued.

4.4.7 Vertical Bowl/Motor Alignment

- **1.** Set the dial indicator to "0" at the top of the of the hub/seal plate.
- 2. Check the clearance at the bottom of the hub / seal plate.
- 3. Variance must be no more than +/- 0.010".
- **4.** If bottom is more positive than +0.010" but less positive than +0.020", screw the front upper nuts down until the dial indicator shows a variance less than + 0.010".

5. If bottom is more than +0.020", add a shim to the rear threaded posts on the motor bracket. The alignment procedure will need to be performed again if shims are added to the rear threaded post on the motor bracket at this point in the procedure.

- **6.** If bottom is more negative than -0.010", screw the front lower nuts up until the dial indicator shows a variance less than -0.010".
- 7. Once the vertical axis alignment of the bowl and motor is achieved, cinch the lower or upper nuts on the front bowl mount bracket to hold the bowl in place.
- 8. Remove the dial indicator from the hub standoff.
- 9. Remove the hub standoff from the hub.
- **10.** Loosen the set screw and remove the hub.
- **11.** Loosen the eight screws in the seal plate.
- 12. Install the hub so that it is close to the labyrinth seal plate but does not touch it.
- **13.** Center the seal plate with respect to the hub.

NOTE

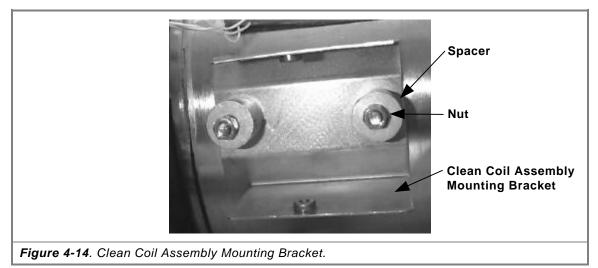
If the seal plate does not have enough play in it to achieve alignment with the hub, loosen the motor assembly and shift it to the left or right as required. Perform the horizontal alignment portion of the procedure again.

- **14.** Remove the hub and key from motor axle.
- **15.** Torque the seal plate screws to 24 inch-lbs.

4.4.8 Re-assembly

- 1. Install the hub onto the motor axle. See Section 4.8, *Hub Installation Procedure*.
- 2. Install the door assembly to the front panel of the dryer.
- **3.** Install the Allen head screws (2) into the door hinge.
- 4. Center the door assembly so that the door bladder does not rub against the bowl.

NOTE


It may be necessary to align the door with the bowl. See Section 4.6, *Door Position Adjustment Procedure.*

- 5. Remove the nut and ferrules from the Tygon tubing and insert the tubing into the hole in the front panel.
- 6. Reassemble the nut and ferrules.
- 7. Connect the static eliminator high voltage cable (red) to the static eliminator power supply.

The static eliminator cable may be installed in either receptacle in the power supply.

NOTE

- **8.** Cut the tie wrap holding the valve bracket assembly and move the assembly to the right side of the unit.
- **9.** Install the N₂ filter and manifold assembly onto the bowl.
- **10.** Tighten the three screws to hold the N_2 filter and manifold assembly in place.
- **11.** Move the valve bracket assembly into place and install the three 7/16" hex head bolts.
- **12.** Install the alarm board. (if applicable)
- **13.** Attach wires #12, #13, #14 to the alarm board.
- **14.** Connect the bowl heater pad thermal switch (J12).
- **15.** Attach the clean coil bracket to the bowl using the nuts and spacers.

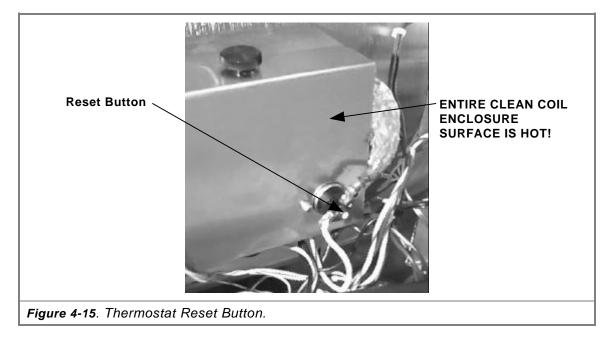
SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

- **16.** Install the clean coil assembly to the bowl.
- **17.** Fasten the cover to the clean coil assembly with thumb screws (2).
- **18.** Connect the transformer cables (2) (6 awg) to the clean coil assembly.
- **19.** Connect the motor power supply plug (J15).
- **20.** Connect the optical speed sensor cable to the sensor board.
- **21.** Connect the wires to the door microswitch.
- **22.** Assemble the switches to the front panel (Start, Stop, Power).
- 23. Connect the wire leads to the switches (Start, Stop, Power).
- 24. Connect the clean coil assembly snap switch (J18).
- **25.** Connect bullet connectors (2) (J21, J22).
- **26.** Connect all the plumbing to the valve bracket assembly: (door bladder lines, DI water lines, nitrogen clean coil lines).
- **27.** Attach the rear panel to the base mounting assembly and tighten the upper (3) and lower Phillips screws (2).
- **28.** Install the electrical plug (J5).
- **29.** Connect the white (neutral) and green (ground) wires to the ground neutral block.
- **30.** Install connectors (P105) and (P106) to the rear panel.
- **31.** Install the "KA" relay on the mounting bracket.
- **32.** Install the electrical plug (J19) to the ground neutral block.
- **33.** Connect all Teflon lines between the rear panel, the valve bracket assembly, and the index cylinder.
- **34.** Connect the controller cables to the rear panel.
- **35.** Connect the facility lines to the rear panel.
- **36.** Install the dryer cover.
- **37.** Install the rotor into the process bowl. See Section 4.10, *Rotor Removal and Installation Procedure.*

4.5 Resetting the Clean Coil Thermostat

A high temperature thermostat is mounted on the Clean Coil enclosure to protect the Clean Coil assembly from overheating. This thermostat is reset manually.

If the outer temperature of the Clean Coil assembly reaches 125 °C, the Clean Coil is disabled by the thermostat. It must be manually reset when the temperature is 40 °C or less by depressing a reset button mounted on the Clean Coil enclosure.


4.5.1 Tools Required

Philips Screwdriver

4.5.2 Procedure

- **1.** Remove the cover from the dryer.
- 2. Use the Philips screwdriver to press the reset button mounted on the Clean Coil enclosure. See Figure 4-15.

3. Install the dryer cover.

4.6 Door Position Adjustment Procedure

4.6.1 Tools Required

Philips Screwdriver

4.6.2 Procedure

- **1.** Remove the door cover.
- 2. Inspect the position of the door in relation to the perimeter of the bowl. The door should be centered with respect to the bowl and the bladder should not touch the bowl when deflated.
- **3.** Loosen the three retaining screws that fasten the door to the hinge so that the door moves freely.
- **4.** Reposition the door so that it is centered with respect to the bowl, then tighten the retaining screws.
- **5.** Verify that the door handle is properly aligned with the door sensor.
- **6.** Reinstall the door cover without pinching the Tygon tubing.

4.7 Labyrinth Seal Cleaning Procedure

4.7.1 Tools Required

- 1/8" Allen wrench
- Flat Head Screwdriver
- Cleanroom Wipes

4.7.2 Procedure

- **1.** Remove the rotor from the bowl. See Section 4.10, *Rotor Removal and Installation Procedure.*
- 2. The hub is secured to the motor's output shaft by set screws (2). Loosen the set screws with a 1/8" Allen wrench.
- 3. Manually rotate the hub until the key-way in the motor shaft is straight up.
- 4. Place a clean room wipe in the drain area of the bowl.
- 5. Slowly pull the hub out of the bowl, being careful not to drop the key.
- 6. Unscrew the eight screws on the labyrinth seal and remove it from the bowl.
- 7. Remove the Viton O-rings from the seal plate.
- 8. Clean the Viton O-rings with DI water.
- **9.** The seal plate is made of polypropylene. The seal plate should be cleaned with either hydrogen peroxide or IPA and then rinsed with DI water.

CAUTION

$\mathbf{\Lambda}$		
L	•	7

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Do not scratch, nick or damage the seal plate. Do not use any tools or abrasives when cleaning the seal plate. Remove the plate from the bowl if IPA is used to clean the seal plate.

- **10.** Install the O-rings onto the seal plate.
- **11.** Align the seal plate with the bowl, with the slot in the plate in the six o'clock position.
- **12.** Fasten the screws (8) in the seal plate, ensuring that the seal plate is lined up with the motor axle.
- **13.** Reinstall the hub. See Section 4.8, *Hub Installation Procedure*.
- **14.** Reinstall the cover onto the dryer.

4.8 Hub Installation Procedure

4.8.1 Tools Required

- 1/8" Allen wrench
- Clearance Gauge (0.080-inch clearance gauge for 6-inch rotors)

4.8.2 Procedure

- **1.** Bolt the clearance gauge into any of the mounting holes in the hub.
- 2. Insert the key into the key slot on the motor axle.
- **3.** Carefully install the hub onto the motor axle.
- 4. Move the key towards the hub so that the key end is flush with the end of the hub.

NOTE

Verify the step in the gauge extends beyond the edge of the hub and faces the seal plate.

CAUTION

	<u> </u>	
L		$\overline{)}$

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

0.080-inch for 6-inch rotors is a critical dimension. Failure to hold these dimensions could damage the seal and lead to contamination of the bowl.

- 5. Push the hub until the gauge just barely touches the seal plate.
- 6. Secure the hub to the shaft of the motor with the two set screws.
- 7. Rotate hub 360° to ensure the clearance is consistent around the perimeter of the hub.

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Ensure the key is inserted all the way into the hub. Do not allow the key to come in contact with the motor housing bracket.

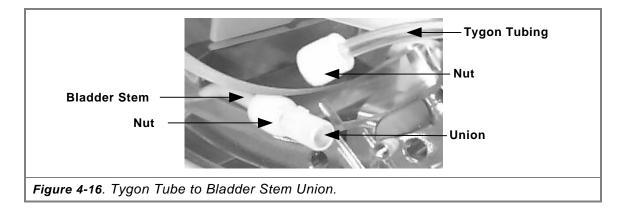
NOTE

When properly adjusted, the hub should rotate freely and the gauge should just barely contact the seal plate at the point of adjustment. There should be no other contact between the gauge and the seal plate.

- 8. Remove the gauge.
- **9.** Install the rotor into the bowl. See Section 4.10, *Rotor Removal and Installation Procedure*.

4.9 Door Bladder Replacement Procedure

4.9.1 Tools Required


• Phillips screwdriver

4.9.2 Parts Lists

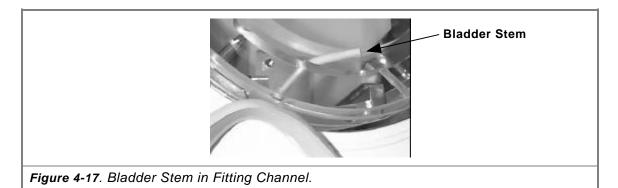
- Door bladder seal
- O ring 0.208 id x 0.07
- Bladder stem insert

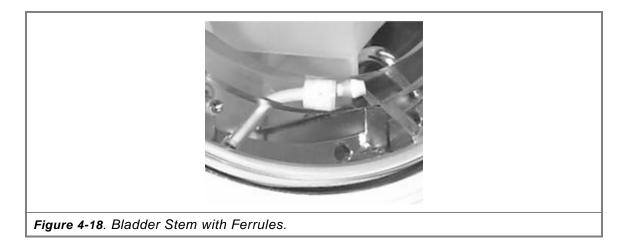
4.9.3 Procedure

- 1. Follow Section 3.4.5, Safe Shut Down Procedures.
- 2. Turn off all facilities: DI, nitrogen, and CDA to the system.
- **3.** Remove the screws (4) in the blue door cover.
- **4.** Loosen the nut that connects the union to the Tygon supply tubing so that the tubing is disconnected from the union.

- 5. Unscrew the union from the end of the bladder stem.
- 6. Remove the flow restrictor from the bladder stem.
- 7. Pull the bladder stem out of the nut.
- 8. Starting at the top, pull the bladder out and away from the door groove.
- 9. Pull the bladder stem out of the fitting channel.
- **10.** Clean the door groove with DI water and a lint-free towel.
- **11.** Discard the old bladder.

4.9.4 Re-assembly


CAUTION


POTENTIAL EQUIPMENT DAMAGE!

Bladder damage might occur if care and attention is not taken. Do not stretch the new bladder when cleaning or installing. The new bladder is shipped with a coating of powder and this powder must be cleaned off prior to assembly.

- **1.** Gently clean the new bladder with DI water and wipe dry with the appropriate cleanroom towel. Ensure the shipping powder has been removed from the bladder before installation.
- 2. Place the O-ring on the bladder stem. Leave the O-ring approximately an 1/8" from the bladder.
- **3.** Slide the bladder stem through the hole into the fitting channel. It may be necessary to cut the tip of the bladder stem to a point to get it through the hole.
- 4. Position O-ring on the door bladder stem so that the O-ring is against the channel orifice.
- **5.** Ensure that the O-ring is positioned on the door bladder stem so that the O-ring is properly seated in the channel.

- 6. Seat the bladder in the door groove and ensure that the bladder is flat around the perimeter of the lid.
- **7.** Insert the bladder stem into the nut. The other nut should be connected to the Tygon tubing.
- **8.** Add the ferrules to the bladder stem and slide them down, leaving enough length to reconnect to the union.
- 9. Cut off any excess bladder tubing so that the union rests in the center of the door cutout.

- **10.** Insert the flow restrictor into the bladder stem.
- **11.** Screw the union into the nut.
- **12.** Connect the nut attached to the Tygon tubing to the union.
- **13.** Clean with DI water the sealing surface of the bowl and clean the bladder again.
- **14.** Re-install the door cover, being careful not to pinch the supply tubing while tightening the screws. The tubing fits into a groove on the lid.

4.10 Rotor Removal and Installation Procedure

4.10.1 Tools Required

- Rotor Tool
- Torque Wrench with a 10" extension and 5/32" hex head
- Cleanroom wipes

4.10.2 Procedure

- 1. Place a cleanroom wipe in the drain area of the bowl.
- 2. Carefully unscrew screws (3) on the rotor using the rotor tool.
- **3.** Prevent the rotor from hitting the bowl as the fourth screw is removed.
- **4.** Carefully remove the rotor from the bowl.
- 5. Mount the rotor on the hub.
- 6. Align the holes in the rotor with the holes in the hub.
- 7. Torque the four screws to 60 in-lbs.

4.11 Retaining Bar Tube Replacement Procedure

There are three types of rotor available for the 1600-55 dryer.

Туре	Rotor Description	
Α	Rotor has wafer support tubing that slides on from the rear of the rotor.	
В	Rotor has wafer support tubing that slides on from the front of the rotor.	
С	Rotor uses a solid PFA rod that slides from the front of the rotor into a stainless steel tube.	

The Retaining Bar Tube Replacement Procedure or the PFA Rod Maintenance Procedure is used for rotor maintenance depending upon the type of rotor in the dryer. Rotor types "A" and "B" have Teflon tubes that shall be replaced following the steps prescribed in the Retaining Bar Tube Replacement Procedure. Rotor type "C" has PFA rods inserted in the rotor and shall be maintained according to the PFA Rod Maintenance Procedure.

NOTE

The Teflon tube on the retaining bar must be replaced according to the Preventive Maintenance Schedule. The replacement tubing must be FEP Teflon, 5/16" OD, 1/4" ID.

4.11.1 Procedure

- 1. Run a Dry-Only recipe to heat the rotor.
- **2.** Remove the rotor from the bowl. See Section 4.10, *Rotor Removal and Installation Procedure*.
- **3.** Use a heat gun to expand the tubing. Slide the expanded tube off the bar and out the hole in the back or front of the rotor and discard the tube.
- 4. Use a small amount of IPA to lubricate the bar. Slide the new tube onto the bar.
- **5.** Reinstall the rotor in the bowl. See Section 4.10, *Rotor Removal and Installation Procedure.*

4.12 PFA Rod Maintenance Procedure

There are three types of rotor available for the 1600-55 dryer.

Туре	Rotor Description	
Α	Rotor has wafer support tubing that slides on from the rear of the rotor.	
В	Rotor has wafer support tubing that slides on from the front of the rotor.	
С	Rotor uses a solid PFA rod that slides from the front of the rotor into a stainless steel tube.	

The Retaining Bar Tube Replacement Procedure or the PFA Rod Maintenance Procedure is used for rotor maintenance depending upon the type of rotor in the dryer. Rotor types "A" and "B" have Teflon tubes that shall be replaced following the steps prescribed in the Retaining Bar Tube Replacement Procedure. Rotor type "C" has PFA rods inserted in the rotor and shall be maintained according to the PFA Rod Maintenance Procedure.

NOTE

Perform this procedure when rotating or replacing the 8-inch long PFA rods. The rods should be removed and rotated ¼ turn every month and replaced after 4 months of use.

4.12.1 Tools Required

- Phillips screwdriver
- Modified vise grip-type crimping tool (PN 1075752.1)
- Stainless steel mandril (PN 1074862.1)
- Wagner force gauge "push-pull" model FDK40 with tapered extension
- Rotor screw tool
- Single-edge razor blade or x-acto knife
- Cleanroom wipes
- IPA lubricant or equivalent

4.12.2 Parts List

• PFA Rod kit (PN 1075200.3)

4.12.3 Rod Removal Procedure

- 1. Move the main power circuit breaker to the full down and off position.
- 2. Disconnect the power cord from the power source.
- **3.** Insert a cleanroom wipe into the bowl drain hole.
- **4.** Remove the rotor (remove 4 mounting screws).
- **5.** Remove the rod from the channel by pushing from the front end of the rotor.

4.12.4 Rod Installation Procedure

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

The crimping tool should never be used without the mandril in position.

- 1. Insert the mandril into the front of the vacated rod channel. Leave 1/2 inch of the mandril protruding from the rotor.
- 2. Fold a cleanroom wipe in half and wrap around the tube where the crimping tool will be placed.
- 3. Adjust the crimping tool so that the jaws meet, then crimp the tube 1 inch from the front of the rotor. If the crimping tool closes too easily, adjust the tool 1/2 turn clockwise and perform the crimp again. See Figure 4-19.

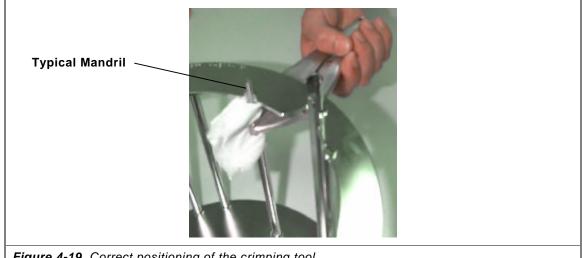


Figure 4-19. Correct positioning of the crimping tool.

4. Remove the mandril.

NOTE

Rotate all existing PFA rods 90° prior to installation.

- 5. Wipe down the new or existing PFA rod and rod channel with lubricant.
- 6. Insert the rod into the channel from the front of the rotor. Trim any excess length.

NOTE Use only the force gauge when performing the push test - never use your hands.

7. At ambient temperature, perform a "push test" on the PFA rod with the force gauge. Push squarely on the rod while avoiding contact with the steel channel. If the rod moves with less than 10lb of force, remove it and perform another crimping.

- 8. Perform the replacement procedure for each rod.
- 9. Install the rotor (4 screws).
- **10.** Connect the power cord.
- **11.** Power the dryer on.
- **12.** Run a recipe to ensure correct operation of the system.
- **13.** Install the dryer cover.

4.13 Bowl Heater Verification Procedure

Two types of bowl heaters are installed on the dryer. Two blanket heaters are installed on the left and right sides of the bowl. They are supplied with 120 VAC through J12. A strip heater is installed on the front of the bowl. The 120 VAC power is supplied through J12.

4.13.1 Tools Required

- Thermocouple
- Temperature Meter

4.13.2 Procedure

- 1. Position the probe of the Fluke 30 clamp meter around any wire on the blanket heater. The heater should draw at least 9 amps.
- 2. Position the probe of the Fluke 30 clamp meter around the N_2 heater supply wire. The N_2 heater should draw at least 1.2 amps.
- **3.** Place the thermocouple against the blanket heaters during a dry cycle and observe the reading on the temperature meter.
- 4. Verify that the blanket heaters cycle on and off.

NOTE

The operating temperature of the pad heaters is approximately 120 $^{\rm o}C.$ The blanket heaters cycle on and off automatically.

- 5. Place the thermocouple against the strip heater during a dry cycle and observe the reading on the temperature meter. The strip heater is installed on the rim of the bowl behind the front panel. It should operate at approximately 65°C.
- 6. Ensure that this heater is cycling on and off.

NOTE

The strip heater has two connectors so it can be disconnected for special applications. The heater temperatures may vary ± 15 °C, depending on the type of thermostats installed.

4.14 Cleaning the Rinser/Dryer

4.14.1 Procedure

CAUTION

\bigwedge

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Do not use any solution that contains hydrocarbons when cleaning the window on the outside of the door. It is made of Lexan and will be harmed by hydrocarbons.

- 1. Remove the rotor. See Section 4.10, Rotor Removal and Installation Procedure.
- 2. Thoroughly clean the bowl and rotor with hydrogen peroxide and rinse with DI water.
- 3. Inspect the nozzles for damage and signs of abrasion and replace them if necessary.
- 4. Inspect the door bladder for nicks and wear.
- 5. Clean the door bladder with DI water only, as other solutions could harm the bladder.
- 6. Check the drain box for wafer chips or other foreign matter. If it is dirty, remove the foreign matter and flush the drain box with DI water.
- **7.** Reinstall the rotor and carrier. See Section 4.10, Rotor Removal and Installation Procedure.
- 8. The final step in the bowl cleaning process is an extended rinse/dry cycle. The duration of this rinse cycle should be at least six minutes. The dry cycle should run long enough to completely dry the bowl.
- **9.** Use a mild soap solution to clean the outside of the unit. Be careful that this solution does not flow inside and contaminate the bowl.

4.15 Resistivity Probe and Monitor Test Procedure

This procedure uses a known-good resistivity input signal (dummy-load test probe) to isolate the failing device in resistivity monitoring (Figure 4-20). The major devices to troubleshoot are:

- the resistivity monitor
- the resistivity probe (clean and/or replace)
- facility DI water

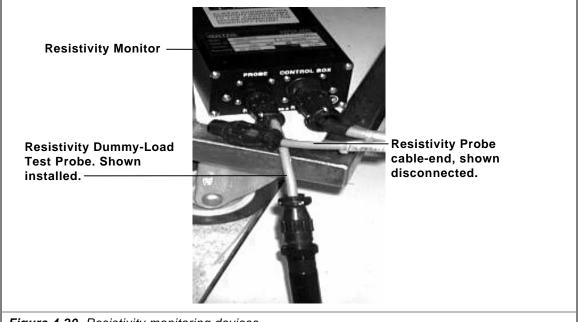
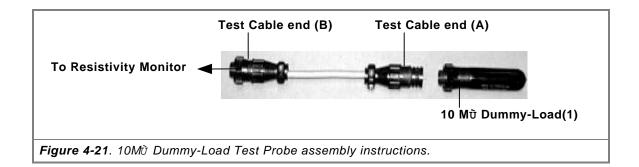


Figure 4-20. Resistivity monitoring devices.

4.15.1 Tools Required


- Test, Resistivity Probe Tester (P/N 1079159.1) (10 Mt Dummy-Load)
- a small container of 10:1 solution of HCI

4.15.2 Resistivity Specification

The resistivity should read 10 megohms ± 0.2 megohms on the control panel during a rinse step.

4.15.3 Test Set-Up

- 1. Move the dryer's main power circuit breaker to the full down and off position.
- 2. Disconnect the existing resistivity probe from the resistivity monitor (Figure 4-20).
- **3.** Assemble the dummy-load test probe and connect it to the existing resistivity monitor (Figure 4-21).
 - connect the 10M^t dummy-load test probe (1) to the test cable end (A)
 - connect the test cable end (**B**) to input of the resistivity monitor (Figure 4-20)

4.15.4 Troubleshooting Procedure

4.15.4.1 Testing the Existing Resistivity Monitor

- 1. Move the dryer's main power circuit breaker to the full up and on position.
- 2. Ensure that Resistivity is enabled ON during the rinse cycle.
- 3. Perform a Rinse-only process in the dryer.
- 4. View the control panel and record the resistivity value.
- 5. Interrupt or stop the process.
- 6. If the resistivity value is outside the stated specification (10 megohms, ± 0.2 megohms), then replace the existing resistivity monitor with a new one. (Send the failed resistivity monitor to GFT for repair).
- 7. Start at Section 4.15.4.1 and test the new resistivity monitor using the 10M^t dummy-load. This will ensure a 'known-good' resistivity monitor. If the resistivity value is correct, then go to Section 4.15.4.2.

4.15.4.2 Testing the Existing Resistivity Probe

- 1. Move the dryer's main power circuit breaker to the full down and off position.
- 2. Ensure that the 10Mt dummy-load test probe is disconnected.
- **3.** Reconnect the existing resistivity probe to the new resistivity monitor.
- 4. Move the dryer's main power circuit breaker to the full up and on position.
- 5. Ensure that Resistivity is enabled ON during the rinse cycle.
- 6. Perform a Rinse-only process in the dryer.
- 7. View the control panel and record the resistivity value.
- 8. Interrupt or stop the process.
- **9.** If the resistivity valve is within the specification then **end**.
- **10.** If the resistivity value is out of the specification, then remove the resistivity probe and dip the metal tip into a 10:1 solution of HCl for 30 seconds. Rinse the probe in DI water for three minutes.
- **11.** If this is the first pass through this procedure, go to Section 4.15.4.2 and retest. If this is the second or third pass through this procedure, go to step #12 below.

- **12.** If the resistivity value is out of specification after cleaning the metal tip and re-testing, then replace the resistivity probe and retest at Section 4.15.4.2. If the resistivity value is still out of specification, then check the facility DI water source.
- **13.** Other areas to check if the resistivity value is still out specification is the dryer bowl for contamination.
- **14.** Call the GFT Technical Assistance Group (TAG) if the above procedure does not isolate the resistivity problems.

This ends the Resistivity Probe and Monitor Troubleshooting Procedure.

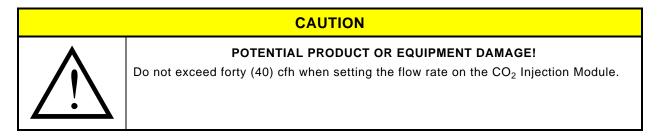
THIS PAGE INTENTIONALL LEFT BLANK.

4.16 CO2 Injection Module Maintenance Procedures

 CO_2 and DI water enter the dryer through separate inlets. Both the pressure and flow of the CO_2 are regulated by the CO_2 Injection Module. The CO_2 is filtered and then mixed with DI water. The mixture is then introduced into the process chamber of the dryer.

4.16.1 Annual PM Procedure

1. Remove and replace the CO₂ filter. Refer to the Section 4.16.4, *Carbon Dioxide Filter Replacement Procedure*.


4.16.2 Functional Description

The following devices are the hardware components of the CO₂ Injection Module.

VENTURE MIXER. The Venturi Mixer is used to inject one fluid into another by creating a pressure difference between the inlet and outlet of the injector.

 CO_2 REGULATOR. The CO₂ regulator controls pressure of the CO₂ from the facility. The operating range of the regulator is 7-100 psi.

FLOWMETER. The flowmeter regulates the flow rate of the CO_2 . The operating range is 5 to 50 scfh.

CO₂ PRESSURE GAUGE. The pressure gage measures the pressure of the CO₂.

 CO_2 SOLENOID VALVE. The solenoid valve controls the flow of CO_2 and DI water. The solenoid valve allows CO_2 and DI water to flow if DI water is requested in a recipe and the flowswitch detects CO_2 .

 CO_2 FILTER. The CO_2 filter is a directional filter that removes particles up to .003µm.

CHECK VALVE. The check valve prevents filtered CO₂ and DI water from re-entering the filter.

4.16.2.1 CO₂ and DI Water Path

- **1.** CO₂ is supplied at the facility.
- **2.** CO_2 enters the back of the CO_2 injection module through the port labeled **CO₂ In**.
- **3.** The CO_2 is regulated by a pressure regulator. The maximum pressure of the CO_2 is 38 psi.
- **4.** The flowmeter regulates the CO₂ flow.

- 5. The pressure of the CO_2 is measured by a pressure gauge.
- 6. DI water will be turned on and mixed with CO₂ when water is requested in a recipe. DI water will only flow if CO₂ is detected by the flowswitch. Wire four is connected to ground. Wire three is connected directly to the solenoid valve. Wire two is connected to the solenoid valve and to the adjustable flow switch.
- **7.** The CO_2 gas is filtered.
- 8. The CO_2 passes through the check valve. The check valve allows flow in one direction. It ensures that the mixture will not backup through the CO_2 filter.

NOTE

Ensure that the CO_2 pressure exceeds the DI water pressure by approximately five (5) psi.

- **9.** The CO_2 is injected into the middle of the venturi mixer. DI water enters through one end of the mixer. A pressure difference between the inlet and outlet of the injector creates a vacuum inside the body, which results in a suction through the CO_2 port.
- **10.** The mixture leaves the CO₂ Injection Module and returns to the dryer's rear panel.
- **11.** The mixture goes to the DI water manifold and into the process chamber.

4.16.3 Troubleshooting System Faults and HELP Codes

HELP Code	Cause	Solution
0004	Faulty Solenoid Valve	Test CO ₂ Solenoid Valve
CO ₂ /DI Failure		Check facility pressure
		Check pressure regulator
		Verify voltage is nominal \pm 10 volts
	Faulty Flow Switch	Check electrical connections
		Check flow switch operation

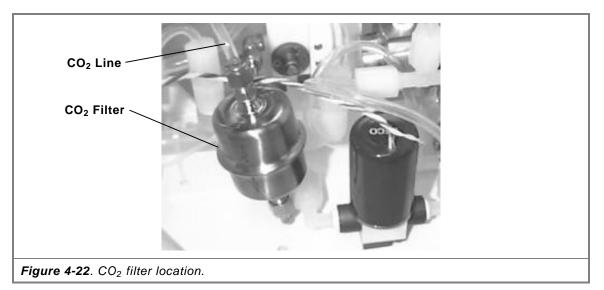
4.16.4 Carbon Dioxide Filter Replacement Procedure

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Always wear clean gloves when handling the carbon dioxide filter to avoid contaminating the filter.

4.16.4.1 Supplies Required


Teflon Tape

4.16.4.2 Parts Required

CO₂ Filter

4.16.4.3 Removing the Filter

- 1. Follow Section 3.4.5, *Safe Shut Down Procedures*.
- 2. Disconnect the power cord from the power source.
- **3.** Turn off the CO_2 supply to the dryer.
- 4. Remove the cover from the CO₂ Injection Module.
- **5.** Disconnect the CO_2 line from the CO_2 filter. See Figure 4-22.

- **6.** Unscrew the filter from the CO₂ line.
- 7. Remove the Teflon tape from the nipple and from the CO_2 line elbow.
- 8. Discard the filter.

4.16.4.4 Installing a New Filter

- 1. Wrap Teflon tape around the threads on the nipple and the threads on the CO₂ line elbow.
- **2.** Fasten the outlet side of the filter to the nipple on the CO₂ piping.
- **3.** Reinstall the dryer cover.
- 4. Go to Section 3.4, *Operating Procedures*.

4.16.5 Solenoid Valve Replacement Procedure

4.16.5.1 Tools Required

• Philips screwdriver

4.16.5.2 Parts Required

• Solenoid Valve Assembly

4.16.5.3 Removing the Solenoid Valve

- 1. Follow Section 3.4.5, Safe Shut Down Procedures.
- 2. Disconnect the power cord from the power source.
- **3.** Turn off the CO_2 supply to the dryer.
- 4. Remove the cover from the CO₂ Injection Module.
- 5. Disconnect the tubing from either side of the solenoid valve. See Figure 4-
- **6.** Disconnect the wires from the connector at the back of the module.
- 7. Unscrew the solenoid valve from the bottom plate of the module.

4.16.5.4 Installing a New Solenoid Valve

- **1.** Fasten the solenoid valve to the bottom plate of the module.
- 2. Attach the wires to the connector at the back of the module.
- 3. Connect the tubing to both sides of the solenoid valve.
- 4. Reinstall the dryer cover.
- 5. Turn on the CO₂ supply to the dryer.
- 6. Connect the power cord to the power source.
- 7. Go to Section 3.4, *Operating Procedures*.

4.17 Particle Troubleshooting Procedures

4.17.1 Overview

In order to prove or eliminate the dryer as the device that is causing high particle count in the process, the following tests must be performed. After each test is run, decisions are made based on particle count.

- 1. Initial Test Setup: These procedures establish a known good set of parameters and conditions for the device under test that must be met before troubleshooting can begin.
- 2. Troubleshooting Procedures: After the 'Initial Test Setup' has been verified, specific procedures are implemented. Depending on where on the wafers high particle count is found, a decision can be made as to the cause. Each test is run an average of five (5) times. A brief discussion follows on the types of procedures used:
 - a) **Pre-cleaning Routine**. As part of the initial test setup, this will ensure a clean cassette and 'Hydrophilic' test wafers.
 - **b)** Handling Test. This will account for any particle count added due to the handling of the wafers outside of processing and is subtracted from the total add-ons to obtain the final particle count added by the dryer.
 - c) A 'Dry in–Dry Only' recipe is run and particle count is taken and averaged over five tests and the amount of particles added due to *Handling* is subtracted from this total.
 - d) A 'Wet in- Dry Only' recipe is run and particle count is taken and averaged over five tests and the amount of particles added due to *Handling* is subtracted from this total.
 - e) A 'Wet in-Rinse and Dry' recipe is run and particle count is taken and averaged over five tests and the amount of particles added due to *Handling* is subtracted from this total.

If there is an increase of particles greater than acceptable levels after each troubleshooting step, then by measuring where on the wafers the particles are collecting a decision can be made as to the area or device that is most likely adding the particles.

4.17.2 Prerequisites

The following prerequisite helps declare that the dryer *is* or *is not* the device that is adding high particle count to the wafers:

NOTE

'Particle count is based on the amount of excursion from the original sales contract specification'.

4.17.3 Initial Test Setup #1 (Getting the Dryer Ready)

The following checks and conditions must occur prior to performing particle count troubleshooting procedures on the dryer. Precautions: 1. Ensure Clean Bowl For dryer's with manual operating doors, do not slam door when opening or closing. Minimize contact with the cassette. 2. Ensure N₂ Pressure is Correct Use known good clean gloves. . When loading and unloading cassette, do not • touch the inside of the dryer's bowl or door 3. Load Empty Test with any part of your clothing. Cassette and Run Pre-**Test Cleaning Recipe** 1. Ensure that the dryer bowl is clean. This may entail performing correct bowl cleaning procedures. Resistivity Verify Purity of 2. Ensure that facility N₂ pressure is at the correct reached in time Facility DI water level. 3. Load a known good, clean, and empty cassette Ye (that will later hold the test wafers) into the dryer. Run the Pre-Test Cleaning Recipe with Resistivity 5. set ON. See below. Go to Initial Test #2 4. If the resistivity is not reached within the allotted time, check the purity of the facility DI water, then start at step #1 of this procedure again. 5. If resistivity is reached, go to Initial Test Setup #2. Pre-Test Cleaning Recipe (for cassette and dryer): **Rinse STEP** TIME RPM STATIC HEATER RES. DI H₂O N_2 1 60 50 ON ON OFF ON 15 Meg Ω 2 45 300 ON ON OFF ON 15 Meg Ω Dry STEP 1 240 2000 OFF ON ON ON OFF 2 240 500 OFF ON ON ON OFF

4.17.4 Initial Test Setup #2 (Getting the Test Wafers Ready)

The following checks and conditions must occur prior to performing particle count troubleshooting procedures on the dryer.

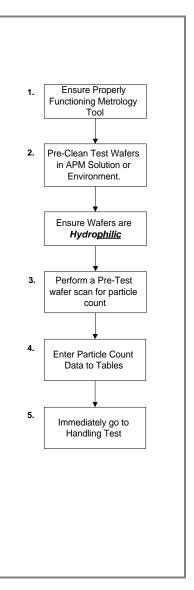
1. Ensure that the Metrology tool is functioning properly. Handle the test wafers properly, use vacuum wands (not tweezers).

2. GFT recommends pre-cleaning the test wafers (usually three) in a solution of ammonia peroxide mixture (APM). The pre-cleaning process is as follow:

a.) 10-minute dip in a,

b.) APM concentration mix of H₂O:H₂O₂:NH₄OH at 5:1:1 (SCI)

c.) Megasonic clean


d.) Rinse and dry in a qualified dryer.

Ensure all three test wafers surfaces are hydrophilic. To do this, look at the test wafers during the rinse step of the above precleaning process to ensure that the water is <u>**not**</u> sheeting off of the wafers.

3. Use the Data Collection Tables supplied in Section 4.17.9 for finding and keeping track of the particle count averages used in troubleshooting. Perform a Pre-Test particle count of the test wafers. Do not use wafers with particle counts >50 particles at $\geq 0.2 \ \mu m$ in size.

4. Enter the pre-scan particle count data to the collection table (See Table 4-1).

5. Immediately go to the Handling Test (Section 4.17.5) and start collecting particle count data using the collection tables at the end of this section.

This ends the Initial Test Setup.

4.17.5 Handling Test

This test establishes the amount of particles added to the wafers from operator handling, the cleanroom and metrology tool. The results of this test will be subtracted from the results of actual recipe testing in the dryer.

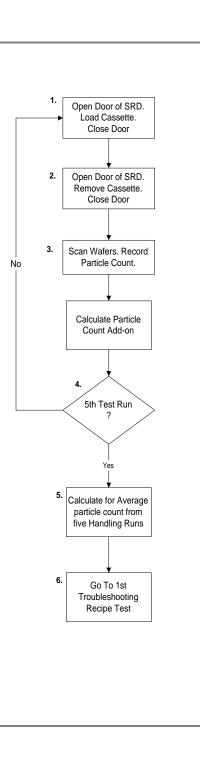
Precautions:

- For dryer's with manual operating doors, do not slam door when opening or closing.
- Minimize contact with the cassette.
- Use known good clean gloves.
- When loading and unloading cassette, do not touch the inside of the dryer's bowl or door with any part of your clothing.

To perform this test:

1. Open the door of the dryer under test. Load the cassette with the three pre-scanned test wafers into the dryer. *Do not run the dryer.* Close the door.

2. Open the door of the dryer and take out the cassette.


3. Scan the wafers and add this data to the Data Collection Table under the column *Handling Test Run*. See Section 4.17.9.1, Table 4-2. Calculate the particle count add-on (subtract the post-scanned number from the prescanned number).

4. Perform steps **1.** through **3.** four more times. After each Handling Run add and calculate the particle count data to Table 4-3.

5. Calculate for the average total particle count for the five Handling Runs. This total will be subtracted from the final particle count total of all troubleshooting recipe tests.

6. Go to the 'Dry-In, Dry Only' Troubleshooting Recipe Test.

This ends the Handling Test.

4.17.6 Troubleshooting Recipe Tests

Now that the average Handling particle count adder has been calculated, run the following recipe five times using the test wafers and the Data Collection Tables.

4.17.6.1 Dry-In, Dry Only Troubleshooting Recipe Test

Each time (5) this recipe is run, perform wafer scans and use the data collection tables to 1. Load Cassette Run Dry-In, Dry-Only capture and calculate particle counts add-ons. Recipe **Precautions:** For dryer's with manual operating doors. 2. Scan Wafers. Record do not slam door when opening or closing. Particle Count Minimize contact with the cassette. • Use known good clean gloves. No • Calculate Particle When loading and unloading cassette, do • Count Add-on not touch the inside of the dryer's bowl or door with any part of your clothing. To perform this test: 3 1. With wafers in the dryer, run a Dry-In, Dry-5th Test Run Calculate Average of 5 Runs Only recipe as configured in the table below. 2. After the first run, scan the test wafers and enter the data in the collection table, see Subtract Handling Section 4.17.9.3. Calculate the particle count Average from Final add-on (subtract the post-scanned number from Particle Count the Handling Test final number). Average. 3. After all five runs have been performed, calculate the average and subtract the Handling Go To Final average from the final results (see Section Troubleshooting Results, For Particle Count 4.17.9.2). Dry-In-Dry-Only Recipe Acceptable Section 4.17.7.1 4. If the total particle count is unacceptable, go to Section 4.17.7.1 for Dry-In, Dry-Only Yes Troubleshooting Results. 5. Go To 'Wet-In, Dry Only' 5. If the total particle count is acceptable, go Troubleshooting Recipe. to the second recipe test, 'Wet-in, Dry Only'. Dry-in, Dry-Only Recipe: STEP RES. TIME RPM STATIC HEATER DI H₂O N_2 240 2000 OFF ON ON ON OFF 1 2 240 500 OFF ON ON ON OFF

^{*} 'Particle count is based on the amount of excursion from the original sales contract specification'.

5 Runs

Particle Count.

Final

Particle Count

Acceptable

Yes

RES.

OFF

OFF

4.17.6.2 Wet-In, Dry-Only Troubleshooting Recipe Test

Each time (5) this recipe is run, perform wafer 1. scans and use the data collection tables to Pre-Wet Test Wafers in Overflowing Clean capture the particle counts. H₂O for 30 seconds. Precautions: For dryer's with manual operating doors, do • 2. not slam door when opening or closing. Load Cassette. Run Wet-In, Dry-Only Minimize contact with the cassette. Recipe. • Use known good clean gloves. • When loading and unloading cassette, do • 3. not touch the inside of the dryer's bowl or Scan Wafers. Record No Particle Count. door with any part of your clothing. To perform this test: Calculate Particle 1. Pre-wet the test wafers in a known good, Count Add-on clean source of overflowing DI water for 30 seconds. Do not use spray bars. 2. Place the test wafers in the dryer and run the 'Wet-In, Dry-Only' recipe as configured in the Calculate Average of 5th Test Run table below. 3. After the first run, scan the test wafers and enter the data in the collection table, see Section 4.17.9.4. Calculate the particle count add-on Subtract Handling (subtract the post-scanned number from the 'Dry-Average from Final In, Dry-Only' final number). 4. After all five runs have been performed, calculate the average of all runs and subtract the Go To Handling Average from the final results (See Troubleshooting Results, For Wet-In, Dry-Only Recipe Section 4.17.9.2). Section 4.17.7.2 5. If the total particle count is unacceptable, go to Section 4.17.7.2 for 'Wet-In, Dry-Only' Troubleshooting Results. 6. Go To 'Wet-In Rinse and Dry' Troubleshooting Recipe. 6. If the total particle count is acceptable, go to the third recipe test, Section 4.17.6.3, 'Wet-in, Rinse and Dry'. Wet-in, Dry-Only Recipe: **Dry STEP** STATIC TIME RPM HEATER DI H₂O N_2 1 240 2000 OFF ON ON ON OFF 2 240 500 ON ON ON

'Particle count is based on the amount of excursion from the sales contract specification'.

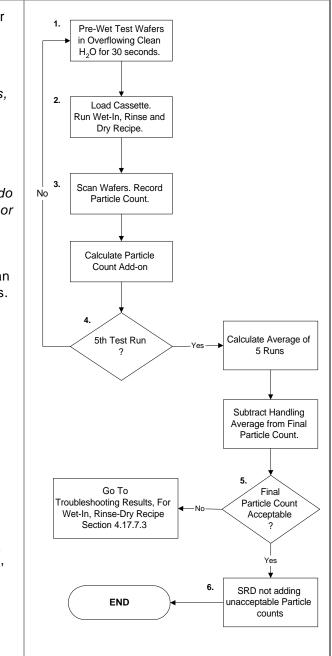
4.17.6.3 Wet-In, Rinse and Dry Troubleshooting Recipe Test

Each time (5) this recipe is run, perform wafer scans and use the data collection tables to capture the particle counts.

Precautions:

- For dryer's with manual operating doors, do not slam door when opening or closing.
- Minimize contact with the cassette.
- Use known good clean gloves.
- When loading and unloading cassette, do not touch the inside of the dryer's bowl or door with any part of your clothing.

To perform this test:


1. Pre-wet test wafers in a known good, clean source of overflowing DI water for 30 seconds. Do not use any spray bars.

2. Place the test wafers in the dryer and run the 'Wet-In, Rinse and Dry' recipe as configured in the table below.

3. After the first run, scan test wafers and enter data in the collection table, see Section 4.17.9.5. Calculate the particle count add-on (subtract the post-scanned number from the 'Wet-In, Dry-Only' final number).

4. After all five runs have been performed, calculate the average of all runs and subtract the Handling Average from the final results (See Section 4.17.9.2).

5. If the total particle count is unacceptable, go to Section 4.17.7.3 for 'Wet-In, Rinse and Dry' Troubleshooting Results. If total particle count is acceptable*, then the dryer is not adding unacceptable particle count.

Rinse STEP	TIME	RPM	DI H ₂ O	N ₂	STATIC	HEATER	RES.
1	60	50	ON	ON	OFF	ON	15 MegΩ
2	45	300	ON	ON	OFF	ON	15 MegΩ
Dry STEP							
1	240	2000	OFF	ON	ON	ON	OFF
2	240	500	OFF	ON	ON	ON	OFF

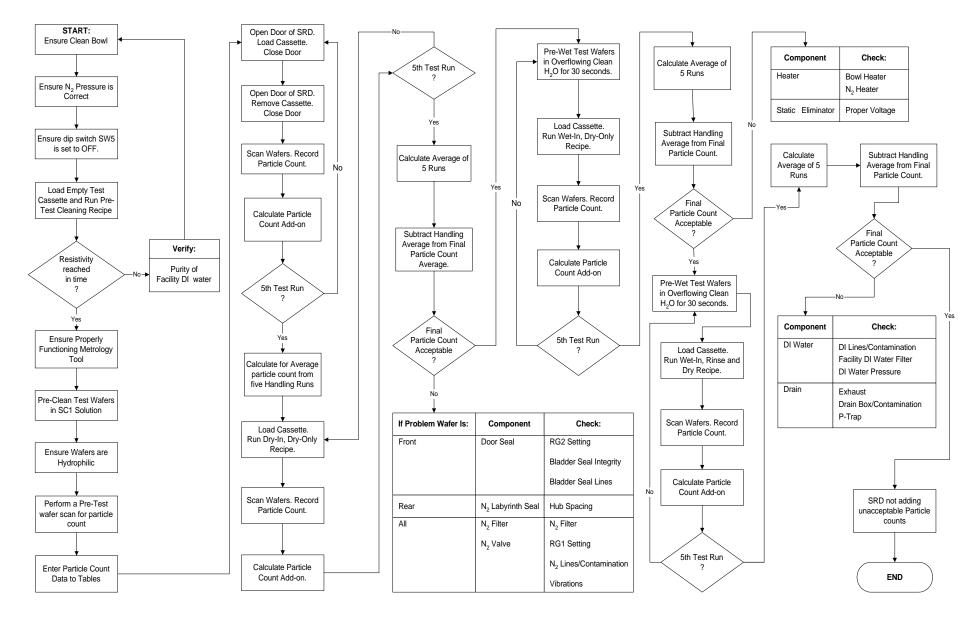
SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

4.17.7 Troubleshooting Results

4.17.7.1 Dry-In, Dry-Only High Particle Count Results

Depending upon which test wafer has high particle count determines which components of the dryer to check. Follow the table below for the suggested solutions.

If Problem Wafer Is:	Component	Check:
Front	Door Seal	RG2 Setting
		Bladder Seal Integrity
		Bladder Seal Lines
Rear	N ₂ Labyrinth Seal	Hub Spacing
All	N ₂ Filter	N ₂ Filter
	N ₂ Valve	RG1 Setting
		N ₂ Lines for Contamination
		Vibrations


4.17.7.2 Wet-In, Dry-Only High Particle Count Results

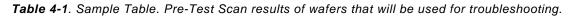
Component	Check:
Heater	Bowl Heater
	 N₂ Heater
Static Eliminator	Proper Output

4.17.7.3 Wet-In, Rinse and Dry High Particle Count Results

Component		Check:
DI Water	•	DI Lines for Contamination
	•	Facility DI Water Filter
	•	DI Water Pressure
Drain	•	Exhaust
	•	Drain Box for Contamination
	•	P-Trap

4.17.8 Comprehensive Flowchart

THIS PAGE INTENTIONALLY LEFT BLANK.


4.17.9 Data Collection Tables

The following tables will help in accumulating, organizing and analyzing particle count scans. Known-good (clean) wafers are essential for troubleshooting. A pre-test scan for particles on the Known-good (clean) wafers is needed before troubleshooting can begin. Three to six wafers can be used for testing.

The averaged results of these pre-test scans will be deducted from the Handling Test (see Section 4.17.5). Do not use wafers with particle counts >50 particles (Light Point Defect) at $\ge 0.2 \ \mu m$ in size.

The table below (broken into sections for clearer understanding) will help organize the collection of data. Attached to the rear of this section are blank tables for use during actual data collection. The values entered in the following tables are for demonstration purposes only, your values will be different.

4.17.9.1 Collecting Data from Handling Test

Wafer Slot Position 25	Pre-Test Scan Results 18	-	The three bolded totals will be subtracted from the first Handling Test results. See Table 4-2.
13	13		
1	52		Note : The technician performing the pre-test scans may elect to clean or replace wafer
	52	J	number 1 as it has a particle count >50.

		Handlin Run N		
Wafer Slot Position	Pre-Test Scan Results	Results	Delta	
25	18	21	3	
13	13	9	(-4) ◄	•
1	52	50	(-2)	

Note: It is normal for the particle count to decrease after a test. This is an indication that the dryer is functioning properly.

		Handling Run N		Handlin Run N	-	Handling Run N		Handling Run N	•	Handlin Run N	•	
Wafer Slot Position	Pre-Test Scan Results	Results	Delta	Results	Delta	Results	Delta	Results	Delta	a Results	Delta	Ave. Delta
25	18	21	3	20	(-1)	25	5	27	2	29	2	2.2
13	13	9	(-4)	10	1	11	1	17	6	19	2	1.2
1	52	50	(-2)	49	(-1)	45	-4	46	1	43	(-3)	(-9)
										Overall Av	erage:	0.53

Table 4-3. Total results after all five Handling Tests are run.

4.17.9.2 Calculating for Overall Average Handling Test Add-on

The average particle count added to the wafers before troubleshooting due to handling is calculated in the following manner:

Wafer Position	Total Delta	Average Delta per Run	Overall Average per Wafer
25	11	2.2	
13	6	1.2	
1	(-9)	(-1.8)	
	Total: 8	Total: 1.6	Total: 0.53

The **0.53** particle count value is the average amount that is present on all three wafers due to handling. This total will be subtracted from the Troubleshooting Recipe Test particle count results. This will give a more precise count of added particles from the dryer.

4.17.9.3 Collecting Data from the 1st Troubleshooting Recipe Test

To start capturing data for troubleshooting record the values from the 5th Handling Test Results column to the table below. Run all five 'Dry-In, Dry-Only' Troubleshooting Tests and add the particle count data of each run. Calculate for each Delta and calculate for the overall average 'Dry-In, Dry-Only' addition. Subtract the Handling Test overall average from the 'Dry-In, Dry-Only' recipe overall average.

		Dry-In, Only Rui	-	Dry-In, Only Rui	•	Dry-In, Only Rui	•	Dry-In, Only Rui	-	Dry-In, Only Rui	•	
Wafer Slot Position	5 th Handling Test Results	Results	Delta	Ave. Delta								
25	29	47	18	20	(-27)	27	7	19	(-8)	22	3	(-1.4)
13	19	20	1	12	(-8)	22	10	15	(-7)	16	1	(-0.6)
1	43	13	(-30)	7	(-6)	18	11	28	10	19	(-9)	(-4.8)
									0	verall Ave	erage:	(-2.27

Table 4-4. Final Handling Test Run Results added to the table to start Troubleshooting Recipe Tests.

4.17.9.4 Calculating for Average 'Dry-In, Dry-Only Add-on

The average particle count added to the wafers after the first troubleshooting recipe can now be calculated:

Wafer Position	Total Delta	Average Delta per Run	Overall Average per Wafer	Minus Handling Test Overall Average	Overall Average per Wafer by dryer
25	(-7)	(-1.4)			
13	(-3)	(-0.6)			
1	(-24)	(-4.8)			
	Total: (-34)	Total: (-6.8)	Total: (-2.27)	0.53	(-2.8)

The overall average per wafer particle count of (-2.27) is the amount that is present on the wafers after the first troubleshooting recipe test. The (-2.8) particle count value is the amount that is added to the wafers that was due to the dryer, or in this case the dryer cleaned away an additional 2.8 particles. If this value is unacceptable, go to Section 4.17.7.1 for troubleshooting results. If this value is acceptable, go to the 2^{nd} troubleshooting recipe, Section 4.17.6.2.

4.17.9.5 Collecting Data from the 2nd Troubleshooting Recipe Test

Record the values from the 5th 'Dry-In, Dry-Only' Results column into the table below. Run all five 'Wet-In, Dry-Only' Troubleshooting Tests and add the particle count data of each run. Calculate for each Delta and calculate for the overall average 'Wet-In, Dry-Only' add-on. Subtract the Handling Test overall average from the 'Wet-In, Dry-Only' recipe overall average.

		Wet-In, Dry- Only Run No. 1			Wet-In, Dry- Only Run No. 2		Wet-In, Dry- Only Run No. 3		Wet-In, Dry- Only Run No. 4		Wet-In, Dry- Only Run No. 5	
Wafer Slot Position	5 th Dry-In, Dry-Only Results	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Ave. Delta
25	22	27	5	45	18	46	1	46	0	52	8	6.4
13	16	22	6	25	3	27	2	38	11	39	1	4.6
1	19	30	11	35	5	40	5	45	5	49	4	6.0
									0	verall Av	erage:	17.0

Table 4-5. 'Wet-In, Dry-Only' Troubleshooting Recipe Data Collection Table.

4.17.9.6 Calculating for Average 'Wet-In, Dry-Only Add-on

The average particle count added to the wafers after the first troubleshooting recipe can now be calculated:

Wafer Position	Total Delta	Average Delta per Run	Overall Average per Wafer	Minus Handling Test Overall Average	Overall Average per Wafer by dryer
25	32	6.4			
13	23	4.6			
1	30	6.0			
	Total: 85	Total: 17.0	Total: 5.67	0.53	5.14

The overall average per wafer particle count of **5.67** is the amount that is present on the wafers after the second troubleshooting recipe test. The **5.14** particle count value is the amount that is added to the wafers that was due to the dryer. If this value is unacceptable, go to Section 4.17.7.2 for troubleshooting results. If this value is acceptable, go to the 3rd troubleshooting recipe, Section 4.17.6.3.

4.17.9.7 Collecting Data from the 3rd Troubleshooting Recipe Test

Record the values from the 5th 'Wet-In, Dry-Only' Results column into the table below. Run all five 'Wet-In, Rinse and Dry' Troubleshooting Tests and add the particle count data of each run. Calculate for each Delta and calculate for the overall average 'Wet-In, Rinse and Dry' add-on. Subtract the Handling Test overall average from the 'Wet-In, Rinse and Dry' recipe overall average.

		Wet-In, Rinse, Dry Run No. 1		Wet-In, Rinse, Dry Run No. 2		Wet-In, Rinse, Dry Run No. 3		Wet-In, Rinse, Dry Run No. 4		Wet-In, Rinse, Dry Run No. 5		
Wafer Slot Position	5 th Wet-In, Rinse-Dry Results	Results	Delta	Ave. Delta								
25	52	60	8	65	5	66	1	67	1	69	2	3.4
13	39	45	6	52	7	68	16	72	4	75	3	7.2
1	49	64	15	66	2	70	4	76	6	80	4	6.2
									0	verall Av	erage:	5.60

 Table 4-6. 'Wet-In, Rinse and Dry' Troubleshooting Recipe Data Collection Table.

4.17.9.8 Calculating for Average 'Wet-In, Rinse and Dry Add-on

The average particle count added to the wafers after the first troubleshooting recipe can now be calculated:

Wafer Position	Total Delta	Average Delta per Run	Overall Average per Wafer	Minus Handling Test Overall Average	Overall Average per Wafer by dryer
25	17	3.4			
13	36	7.2			
1	31	6.2			
	Total: 84	Total: 16.8	Total: 5.60	0.53	5.07

The overall average per wafer particle count of **5.60** is the amount that is present on the wafers after the third troubleshooting recipe test. The **5.07** particle count value is the amount that is added to the wafers that was due to the dryer. If this value is unacceptable, go to Section 4.17.7.3 for troubleshooting results. If this value is acceptable, then the dryer is not adding unacceptable particle count to the wafers. This may point to other devices within the processing tool set (i.e., rinse bath, chemical tank, handling, cleanroom, facility fed chemicals, DI water and others).

TEST PERFORMED BY:_____

DATE: _____

Dryer ID:_____

			Handling Test Handling Run No. 1 Run No		•			Handling Test Run No.4		Handling Test Run No. 5		
Wafer Slot Position	Pre-Test Scan Results	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Ave. Delta
25												
13												
1												
						•	1		0	verall Av	erage:	

			Dry-In, Dry- Only Run No. 1		Dry-In, Dry- Only Run No. 2		Dry-In, Dry- Only Run No. 3		Dry-In, Dry- Only Run No. 4		Dry-In, Dry- Only Run No. 5	
Wafer Slot Position	5 th Handling Test Results	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Ave. Delta
25												
13												
1												
	•		<u> </u>						C	verall Av	erage:	

Overall Average:

			Wet-In, Dry- Only Run No. 1		Wet-In, Dry- Only Run No. 2		Wet-In, Dry- Only Run No. 3		Wet-In, Dry- Only Run No. 4		Wet-In, Dry- Only Run No. 5	
Wafer Slot Position	5 th Dry-In, Dry-Only Results	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Ave. Delta
25												
13												
1												
									0	verall Ave	erage:	

		Wet-In, Rinse- Dry Run No. 1		Wet-In, Rinse- Dry Run No. 2		Wet-In, Rinse- Dry Run No. 3		Wet-In, Rinse- Dry Run No. 4		Wet-In, Rinse- Dry Run No. 5		
Wafer Slot Position	5 th Wet-In, Rinse-Dry Results	Results	Delta	Ave. Delta								
25												
13												
1												

Overall Average:

TEST PERFORMED BY:_____

DATE: _____

Dryer ID:_____

		Run N	o. 1	Run N	lo. 2	Run N	o. 3	Run N	o. 4	Run N	lo. 5	
Wafer Slot Position	Results	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Results	Delta	Ave. Delta
25												
20												
15												
10												
5												
1												
									0	verall Av	erage:	

Results	Delta	Results	Delta	Results	Delta	Results	Delta	Results	Dalta	Ave.
							Dena	Results	Delta	Delta
						Image: selection of the	Image: state of the state o			

Overall Average:

5 SECS II COMMUNICATIONS

5.1 **Programming the Host Computer**

The SuperClean 1600-55 comes standard with GFT's SECS-Interface. The SECS-II interface supports external process control by a host computer. The link between the dryer and a host computer is over an RS-232-C channel. GFT's SECS-II interface supports:

- Remote verification of dryer status, error condition and current recipe number.
- Remote recipe selection
- Remote review of recipe parameters
- Remote reprogramming of recipe parameters
- Remote dryer reset and cycle start/stop. Remote rotor index and door open/close.
- Manual override of host control at any time

GFT's implementation of the SECS-II protocol conforms to the SEMI (Semiconductor Equipment and Materials Institute, Inc.) SEC (Semi Equipment Communications) specification, versions E4-80 and E5-84. The electrical interface is made in accordance with EIA standard RS-232-C for interface type E, duplex communication. Stardard transmission speed is 9600 bps. Other speeds may be available depending on the specific configuration.

The dryer will not initiate a session with the host, it will only respond to host commands. Recipe parameters cannot be modified by the host while cycles are in progress. Recipe selection is accepted by the rinser/dryer only when the machine is in standby mode.

5.2 System Components and Specifications

Access to the communications port is made using a standard female Bell Modem 25-pin connector mounted on the controller. The pertinent signal lines are summarized in the following table.

Pin	Description
1	Shield
2	Transmitted Data
3	Received Data
7	Signal Ground

5.3 Supported Functions

The host may request the dryer to perform the following functions:

• Provide current machine status or error condition as outlined below:

	Bit Definitions-Machine Status											
7	6	5	4	3	2	1	0					
1	Ι	Ι	I	I	I	I.	1	Error				
1	Ι	Ι	I	I	I	1		Stand-by				
1	Ι	Ι	I	I	1			Cycle				
1	Ι	Ι	I	1				Stop				
1	Ι	Ι	1					Program				
1	Ι	1						Index				
1	1							Door Control				
1								Wait				

	Bit Definitions-Error Condition							
7	6	5	4	3	2	1	0	
1	I.	I	Ι	I.	I	I	1	Power Failure
1	I.	I	Ι	I.	I	1		Index Error
1	I	I	I	I	1			Max Speed Reached
1	I.	I	Ι	1				Low N ₂ Pressure
1	I	I	1					Low Bladder Pressure
1	I.	1						Door Open
1	1							Door Close Failure
1								Door Open Failure

- Remote Commands
 - ♦ Start or stop cycle
 - ♦ Index the rotor
 - ♦ Resistivity bypass
 - ♦ Open or close the door
 - ♦ Reset error condition
- Change recipe parameters
 - Rinse time
 - Rinse speed
 - ◊ Dry time
 - Ory speed
 - Output options on/off
 Resistivity setpoint (in
 - meg-ohms)

- View Recipe Parameters
 - ♦ Rinse time
 - ♦ Rinse speed
 - ♦ Dry time
 - ♦ Dry speed
 - Output options on/off
 - Resistivity setpoint (in meg-ohms)
- Output options
 - OI water valve
 - Nitrogen valve
 - ◊ Heater
 - ◊ Static eliminator
 - Resistivity bypass

5.4 Streams and Functions

GFT's Secs II implementation conforms to the SEMI specification. Information is conveyed between the dryer and the host computer by means of categories (**Streams**) and detailed messages (**Functions**). Message content is structured as Items and Lists.

The dryer will respond to the messages listed below when received from the host:

S1, F1	Presence check
S1, F5	Status or error check
S2, F19	Remote error reset
S2, F21	Commands
S7, F1	Select Recipe
S7, F3	Change Recipe
S7, F5	Read Recipe

Dryer responses include:

S1, F2	Response to presence check	inguiry
0.,		mqqmy

- S1, F6 Response to status or error check
- S2, F20 Response to remote error reset
- S2, F22 Response to remote command
- S7, F2 Response to recipe selection request
- S7, F4 Response to recipe change request
- S7, F6 Response to recipe read request
- S9, F1 Unrecognized device ID
- S9, F5 Unrecognized function type

All transactions are initiated by the host by sending an <ENQ> character and awaiting an <EOT> character from the dryer. When the <EOT> has been received, the host will send the appropriate stream and function in SECS-II format (one byte block length, 10 bytes header, x bytes message, and two bytes checksum. Correct reception is acknowledged by an <ACK>; incorrect reception by a <NAK>.

The dryer will respond to the message received from the host and will wait for an <ACK> or <NAK>.

Details for each transaction supported by the Rinser/Dryer are given in Section 5.5, *Transaction Detail*.

5.5 Transaction Detail

5.5.1	Presence	Checking
-------	----------	----------

Mess	age	Response		
S1, F1 H → E		S1, F	2 E → H	
0A Block Length		1A	Block Length	
0A ID 28		8A 28	ID	
81 S1, F1 01		01 02	S1, F2	
80 Blk. # 01	Header	80 01	Blk. #	Header
XX System XX XX XX XX		XX XX XX XX	System	
H Checksum L		01 02	List of 2 items	
X = Don't care H = Checksum (Hi-byte)		41 04	4 ASCII bytes Item 1	Item 1
L = Checksum (Lo-byte)		31 36 30 30	MDLN #1600	
		41 06	6 ASCII bytes Item 2	
		XX XX XX XX XX XX	REV = X X X X X	Item 2
		XX H L	X Checksum	
		Prese ID va	ence check will produce lue for revision	ce the proper EPROM

	Mess	sage	Response		
S1, F5	5 H → E		S1, F	6 E → H	
0D	Block Length		2A	Block Length	
0A 28	ID		8A 28	ID	
81 05	S1, F5		01 06	S1, F6	
80 01	Blk. #	Header	80 01	Blk. #	Header
XX XX XX XX XX	System		XX XX XX XX XX	System	
21 01	1 binary item		01 07	List of 7 items	
00	Status 0		21 02	2 binary bytes Item 1	
H L	Checksum		xx xx	Status Error	Item 1
			41 01	1 ASCII bytes	Item 2
			xx	Recipe number (00-09)	nem z
			41 01	1 ASCII byte	Item 3
			xx	Step #	
			41 04	4 ASCII bytes	
			XX XX XX XX XX	1's current rpm 10's current rpm 100's current rpm 1000's current rpm	Item 4
				• •	

5.5.2 Status or Error Check

Status or Error Check (continued)

Response

S1, F6 E → H						
41	4 ASCII bytes					
04						
XX	1's current time	Item 5				
XX	10's current time					
XX	100's current time					
XX	1000's current time					
L		1				
41	3 ASCII bytes					
03						
		Item 6				
XX	.1's resistivity					
XX	1's resistivity					
XX	10's resistivity					
		1				
21	1 binary byte					
01		Item 7				
XX	IOS					
	Ohaalaa					
H	Checksum					
L						
See be	low for Status, Error, a	and IOS details				

5.5.2.1 Status/Error Check Detail

Status is a single binary byte.

- B0 = 1 In error mode
- B1 = 1 In standby mode
- B2 = 1 In cycle (run) mode
- B3 = 1 In motor deceleration mode
- B4 = 1 In local programming mode
- B5 = 1 In indexing mode
- B6 = 1 In door open/close mode
- B7 = 1 Waiting for resistivity to reach setpoint

Error is a single binary byte. This byte is checked if B0 of the status byte is set.

- B0 = 1 Power failure (power failed while the machine was in the cycle or deceleration mode.)
- B1 = 1 Index failure
- B2 = 1 Rotor speed beyond 3200 RPM
- B3 = 1 Low nitrogen pressure
- B4 = 1 Low bladder pressure
- B5 = 1 Door opened while machine was in run mode
- B6 = 1 Door close failure
- B7 = 1 Door open failure

IOS (output status) is a single binary byte.

- B0 = 1 DI water valve is open
- B1 = 1 Nitrogen valve is open
- B2 = 1 Heater is on
- B3 = 1 Static eliminator is on
- B4 = 1 Resistivity selected (rinse cycle ends when timer expires and rinse water reaches resistivity setpoint)
- B5 = 1 Door Open
- B6 = 1 Door Closed
- B7 = 1 Heater Failure. (Detected Off. Should be On)

	Messaç	je	Response			
S2, F19 H → E				S2, F20 E → H		
0D	Block Length		0D	Block Length		
0A	ID		8A	ID		
28			28			
82	S2, F19		02	S2, F20		
13			14			
80	Blk. #	Header	80	Blk. #	Header	
01			01			
xx	System		xx	System		
XX			XX			
XX			XX			
XX			XX			
A5	1 integer		21	unsigned byte		
01	unsigned byte		01			
xx	RIC		xx	RIA		
Н	Checksum		Н	Checksum		
L			L			
	a single unsigned inte to reset the error flags.			a single unsigned inte f reset is done or not	ger that notifies the	
RIC =	00h Reset error flags		RIA = 01h Reset denied			
			RIA =	00h Reset to be done		
				denied will be sent to t e of the error has not be		

Message				Response		
S2, F21 H → E				S2, F22 E → H		
0D	Block Length		0D	Block Length		
0A	ID		8A	ID		
28			28			
82	S2, F21		02	S2, F22		
15			16			
80	Blk. #	Header	80	Blk. #	Header	
01			01			
xx	System		xx	System		
XX			XX			
XX			XX			
XX			XX			
21	1 integer		21	1 integer		
01	unsigned byte		01	unsigned byte		
x	RCMD		x	CMDA		
Н	Checksum		Н	Checksum		
L			L			
RCMD	RCMD is a single binary remote command code.			is a single binary co	mmand acknowledge code.	
RCMD	RCMD = 0 Stop the cycle			= 0 Command	accepted	
RCMD	0 = 1 Start the cy	cle	CMDA	= 1 Command	does not exist	
RCMD		system reset	CMDA	= 2 Cannot per	rform now	
RCMD		istivity				
RCMD						
RCMD	0 = 5 Door close					

5.5.4 Commands

	Messag	je	Response		
S7, F1	H → E		S7, F2	' E → H	
12	Block Length		0D	Block Length	
0A 28	ID		8A 28	ID	
87 01	S7, F1		07 02	S7, F2	
80 01	Blk. #	Header	80 01	Blk. #	Header
XX XX XX XX XX	System		XX XX XX XX XX	System	
01 02	List of 2 items		21 01	1 binary byte	
41 01	1 ASCII byte	Item 1	хх	PPGNT	
xx	PPID (Recipe #)				
A5 0	1 integer unsigned byte	Item 2	H L	Checksum	
хх	Length				
H L	Checksum				
proces	s a single ASCII byte t s program recipe num rough 39h (recipes 0 th invalid	ber. Valid PPIDs are		T is a single binary by the recipe selection is or	
	Length is not used, and could be anything			T = 00hSelection acT = 03hInvalid PPIDT = 04hCannot perfer)
				e selection is accepted andby mode	l only if the machine

5.5.5 Select Recipe

Message			Response			
S7, F3	S7, F3 H → E			S7, F4 E → H		
XX	Block Length		0D	Block Length		
0A 28	ID		8A 28	ID		
87 03	S7, F3		07 02	S7, F4		
80 01	Blk. #	Header	80 01	Blk. #	Header	
XX XX XX XX XX	System		XX XX XX XX XX	System		
01 02	List of 2 items		21 01	1 binary byte		
41	1 ASCII byte		xx	ACK		
01	-	Item 1				
xx	PPID (Recipe #)		H Checksum L			
01	Item #2 (includes Ste	eps 0-9)	ACK is a single binary byte			
xx	NOSPR (Number of	recipe steps)	ACK = 00h Changes accepted ACK = 04h PPID not found			
A9	Item contains four 2	byte integers		05h Mode unsupporte	d (NOSPR > 10)	
08	unsigned integers	, ,		40h Programmed spee		
		I		41h Programmed time		
MS BY				42h Programmed resis 43h Static eliminator &		
					x Di on at same time.	
MS BY						
LS BY	ΓΕ (sec)	Stop #0				
MS BY	TE Resistivity	Step #0				
LS BY	-					
000000 LS BY1	•					
	FE Options					
	•					
	•					

5.5.6 Change Recipe

Message

Change Recipe (continued)

A9 Ite	→ E em contains four 2	byte integers
08 ui	nsigned integers	
MS BYTE	Speed	
LS BYTE	(RPM)	
MS BYTE	Time	
LS BYTE	(sec)	Stop #1
MS BYTE	Resistivity	Step #1
LS BYTE	(meg-ohm)	
00000000	Output	
LS BYTE	Options	
A9 Ite	em contains four 2	byte integers
08 ui	nsigned integers	
MS BYTE	Speed	
LS BYTE	(RPM)	
MS BYTE	Time	
LS BYTE	(sec)	
MS BYTE	Resistivity	Step #8
LS BYTE	(meg-ohm)	
00000000	Output	
LS BYTE	Options	
A9 Ite	em contains four 2	hyte integers
	nsigned integers	byte integers
		1
MS BYTE	Speed (RPM)	
20 0 1 2	()	
MS BYTE	Time	
LS BYTE	(sec)	Step #9
MS BYTE	Resistivity	
LS BYTE	(meg-ohm)	
00000000	Output	
LS BYTE	Options	
н с	hecksum	
L U		

Message

Change Recipe (continued)

S7, F3 H → E	S7, F3 H → E						
PPID is the rec recipe	PPID is the recipe number. NOSPR is the number of steps per recipe						
	It is not necessary to have all ten possible steps programmed in each recipe: a recipe can consist of only one step						
Output option a	ssignments:						
B0 = 1	DI water valve is open						
B1 = 1	Nitrogen valve is open						
B2 = 1	Heater is on						
B3 = 1	Static eliminator is on						
B4 = 1	Resistivity is selected (rinse cycle ends when						
	timer expires and rinse water meets or exceeds						
resistivity setpoint).							
B5	Not used						
B6	Not used						
B7	Not used						

5.5.6.1 Change Recipe Example

Assume you are to program recipe #5 with three steps, as outlined below:

Recipe Parameters	Step 0 Rinse Cycle	Step 1 Dry Cycle	Step 2 Dry Cycle
Speed	300 RPM	3000 RPM	600 RPM
Time	120 Sec	180 Sec	60 Sec
Resistivity Setpoint 17.8 Meg-ohm		N/A	N/A
DI valve	On	Off	Off
N2 valve	Off	On	On
Heater	On	On	On
Anti-static	N/A	On	On
Resistivity	On	N/A	N/A

NOTE

When the Resistivity option is "on", the rinse timer must expire before the resistivity set point will be checked.

A sample host message setting the above parameters is listed on the following page.

5.5.6.2 Sample Host Message

	Messag	je	Response		
S7, F3	S7, F3 H → E			. E → H	
2F	Block Length		0D	Block Length	
70A 28	ID		8A 28	ID	
87 03	S7, F3		07 02	S7, F4	
80 01	Blk. #	Header	80 01	Blk. #	Header
00 00 00 00	System		00 00 00 00	System	
01 02	List of 2 items		21 01	1 binary byte	
41 01	1 ASCII byte	Item 1	00	ACK	
05	PPID		H L	Checksum	
01	Item #2 (includes Sto	eps 0-9)	ACK is	a single binary byte	
03	NOSPR (Number of	recipe steps)	ACK = 00h Changes accepted ACK = 04h PPID not found		
A9 08	Item contains four 2 unsigned integers	byte integers	ACK = ACK =	05h Mode unsupporte 40h Programmed spec 41h Programmed time	ed > 3200 RPM
01 2C	Speed (RPM)		ACK =	42h Programmed resis 43h Static eliminator &	stivity>19.9 meg-ohm
00 78	Time (sec)	Step #0			
00 B2	Resistivity (meg-ohm)				
00 15	Output Options				

Message	
S7, F3 H → E	

Sample Host Message (continued)

A9	Item contains four 2 byte integers			
08	unsigned integers			
0B	Speed	1		
B8	(RPM)			
00	Time			
B4	(Sec)	Stop 1		
00	Resistivity	Step 1		
00	(Meg-ohm)			
00	Output			
0E	Options			
A9	Item contains four 2	byte integers		
08	Item contains four 2 byte integers unsigned integers			
	5 5			
02	Speed			
58	(RPM)			
00	Time			
3C	(Sec)			
	(000)	Step 2		
00	Resistivity			
00	(Meg-ohms)			
00	Output			
0E	Options			
<u> </u>		1		
H	Checksum			
L				

	Message			Response		
S7, F5	S7, F5 H → E			E → H		
0F	Block Length		ХХ	Messag	e Length	
0A 28	ID		8A 28	ID		
87 03	S7, F5		07 06	S7, F6		
80 01	Blk. #	Header	80 01	Blk. #		Header
XX XX XX XX XX	System		XX XX XX XX XX	System		
01 01	List of 1 item		01 02	List of 2	items	
41 01	1 ASCII byte		41 01	1 ASCII Item #1	byte	Item 1
xx	PPID		xx	PPID		
H L	Checksum		01	Item #2		
	on't care		хх	NOSPR		
H = Ch	necksum (Hi-byte) ecksum (Lo-byte)		A9 08		ntains four 2 b d integers	yte integers
			MS BY LS BY1		Speed (RPM)	
			MS BY LS BY1		Time (Sec)	Stor 0
			MS BY LS BY1		Resistivity (Meg-ohms)	Step 0
			000000 LS BY1		Output Options	
				•		

5.5.7 Read Recipe

Read Recipe (continued)

Response

S7, F6E → HA9Item contains four 2 byte integers08unsigned integers				
MS BYTE LS BYTE	Speed (RPM)			
MS BYTE LS BYTE	Time (Sec)	Step 1		
MS BYTE LS BYTE	Resistivity (Meg-ohms)	Step 1		
00000000 LS BYTE	Output Options			
	contains four 2 b ned integers	yte integers		
MS BYTE LS BYTE	Speed (RPM)			
MS BYTE LS BYTE	Time (Sec)	Stap 9		
MS BYTE LS BYTE	Resistivity (Meg-ohms)	Step 8		
00000000 LS BYTE	Output Options			
•))			

Read Recipe (continued)

Response

S7, F6	Е → Н						
A9 08							
MS BY LS BYT		Speed (RPM)					
MS BY LS BYT		Time (Sec)	01 0				
MS BY LS BYT		Resistivity (Meg-ohms)	Step 9				
000000 LS BYT		Output Options					
H L	Checks	um					
PPID is	the reci	pe number					
NOSPF	R is the r	number of steps	s per recipe				
program		each recipe: a	ten possible steps recipe can consist				
Output option assignment: B0 = 1 DI water valve is open B1 = 1 Nitrogen valve is open B2 = 1 Heater is on B3 = 1 Static eliminator is on B4 = 1 Resistivity is selected (rinse cycle ends when timer expires and rinse water meets or exceeds resistivity setpoint)							
B5 B6 B7	Not use Not use Not use	ed					

	Respon	se		Response		
S9, F	1 E → H		S9, F5 E →	н		
0A	Block Length		0A Block	Length		
8A 28	ID		8A ID 28			
09 01	S9, F1		09 S9, F 05	5		
80 01	Blk. #	Header	80 Blk. # 01	ŧ	Header	
XX XX XX XX XX	System		XX Syste XX XX XX XX	em		
H L	Checksum		H Chec L	ksum		
H = C	X = Don't care H = Checksum (Hi-byte) L = Checksum (Lo-byte)			e m (Hi-byte) n (Lo-byte)		
Resp	onse is sent from an un	recognized I. D.	Response is a	sent from an unre	ecognized function	

5.5.8 Stream 9 System Errors

THIS PAGE INTENTIONALLY LEFT BLANK.

6 INSTALL and TEST PROCEDURES

6.1 Installation Summary Instructions

NOTE

Although installation information is presented throughout this manual, installation and test procedures are summarized here.

6.1.1 Facility Requirements – Single Dryer

DI H ₂ O Input	³ / ₈ -inch OD	Teflon tubir	ng			
	1.75 gpm minimum					
	25 psi dynamic minimum					
	40 psi dyna	imic maximu	m for low pressure valve			
	70 psi dyna	imic maximu	m for high pressure valve			
DI H ₂ O Return	³ / ₈ -inch OD	Teflon tubir	ıg			
	minimum 5	psi lower the	an input pressure valve			
System N ₂	³ / ₈ -inch OD	Teflon tubir	ng			
	6-7 scfm (g	auge readin	g)			
	60 psi dyna	ımic minimuı	n			
CDA / N ₂	Operates p	neumatic co	mponents			
	1/rinch OD Teflon tubing					
	60-90 psi dynamic					
Drain	1 ½inch mn	pt (drain bo>	κ).			
	1 ½inch pvo	c pipe (drain	plumbing option)			
Vent	1 ½inch pvo	c pipe				
Exhaust	-0.5 max to -1.0 inches of water if not exhausted to fab					
Power	Voltage	Hertz	Amps			
	120 vac	50/60	15 – Standard			
			18 – Step-Up Transformer			
			10 – Step-Down Transformer			

DOCUMENT

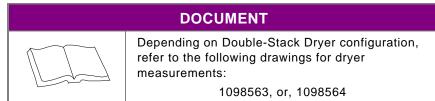
Depending on Single Dryer configuration, refer to drawings:

1098565, or, 1098566

6.1.2 Facility Requirements – Double-Stack Dryers

_	wer Voltage Hertz Amps			
Exhaust	-0.5 max to	-1.0" of wat	er if not exhausted to fab	
Vent	1 ½inch pvo	pipe	- · ·	
			plumbing option)	
Drain		pt (drain box	().	
	60-90 psi d			
			ng w/ single point compression	
			with single point Flaretek	
CDA/N2	Dual ¹ / ₄ inch OD Teflon tubing without single point option			
CDA / N ₂	60 psi dynamic minimum Operates pneumatic components			
	12-14 scfm			
		w/ single point compression		
			with single point Flaretek	
	option			
System N ₂			tubing without single point	
		-	an input pressure valve	
		-	w/ single point compression	
	· ·	eflon tubina	with single point Flaretek	
DI H ₂ O Return	Dual ³ / ₈ -inc option	h OD Teflon	tubing without single point	
	70 psi dyna	mic maximu	m for high pressure valve	
			m for low pressure valve	
		imic minimur	n	
	3.5 gpm mi	-		
		-	w/ single point compression	
	option	oflan tubing	with single point Flaretek	

DOCUMENT


Depending on Double-Stack Dryer configuration, refer to drawings:

1098563, or, 1098564

6.1.3 Physical Requirements for Wet System Mounting

The following dimensions indicate the minimum space needed to mount a dryer in a typical wet system. GFT suggests mounting a dryer no less than 24 inches and no more than 27 inches above the fab floor, as measured from the bottom of the dryer. GFT suggests mounting the Keypad no less than 42 inches and no more than 66 inches above the fab floor, as measured from the bottom of the Keypad.

6.1.4 Pre-Installation Safety Information

6.1.4.1 Ergonomics

GFT does not provide specific installation location requirements. However, the installation location should account for height, reach, load weight, and other factors to provide the operator a safe and comfortable access to the dryer and the keypad. To quote guidelines indicated in SEMI S2-93, the installation should account for the "5th percentile small Asian female to the 95th percentile large American male". Typical installations generally place the system so that the grasp height is approximately 35- to 38-inches above foot level, and no farther than a 7- to 18-inch reach.

WARNING

DRYER IS TOO HEAVY FOR ONE PERSON LIFT!

Due to the excessive weight of the dryer, handling (lifting) should be performed by two persons (minimum).

6.1.4.2 Seismic Activity Precaution

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

The system should be secured to in such a fashion as to inhibit movement in the event of any seismic activity.

Regardless of the locating and leveling means, the dryer should be secured against both vertical and horizontal movement. Securing means should take into account the weight of the dryer under normal operating conditions.

6.1.4.3 User Supplied Devices

"User Supplied Devices" refers to signal lights, switches and alarms, etc., that may be interfaced with the dryer but are not supplied by or purchased from GFT.

Before connecting a user supplied device to the dryer, always refer to the specifications outlined in the drawings to verify that the device can be supported and to determine which wires are used to interconnect the device to the dryer.

6.1.4.4 Equipment Noise Data

The end user of this equipment can expect a continuous A-weighted sound pressure level of less than 70dB(A) at the front of the dryer; and no peak C-weighted instantaneous sound pressure levels in excess of 63 Pa.

6.1.4.5 Dryer Safety Protection

GFT suggests the following protection for all dryers.

- Dryer Circuit Protection
- Electrical Lockout and Tag Procedures
- Emergency Shutdown (EMO / EPO)

6.1.4.6 Dryer Circuit Protection

The facility circuit protection device should be rated to withstand the short circuit current of no less than 10,000 rms symmetrical amperes at 208/120 volts at the incoming terminals.

Power receptacle service requirements are standard #10 AWG 20 ampere wiring, NEMA receptacle configuration type 15-20R. If the specified receptacle is not used, rigid conduit, or flexible conduit for runs of less than 20 feet, must be used. A Ground Fault Interrupter (GFI) with a trip current of less than 7 mA should be employed for personal protection.

6.1.4.7 Electrical Disconnect and Equipment Lockout

Follow standard procedures when working on electrical equipment. The breaker box or branch circuit feeding the equipment must be locked and tagged with the appropriate information.

GFT may not supply a lockable, safety-type electrical disconnect with some dryers. GFT therefore suggests that the end-user provide a means of disconnecting power to the dryer with a lockable-type safety disconnect. Follow all equipment safety Lockout and Tag procedures as outlined in your country's and/or company's equipment safety manuals.

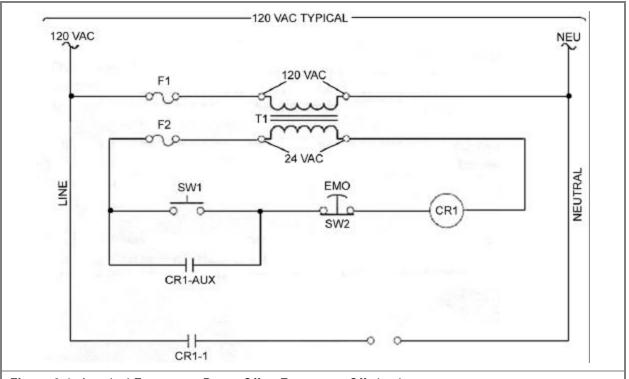
European standards require proper markings on the disconnect. If a mains plug is installed, is should conform to IEC 320. The EU end user should provide a main power cord that meets the requirements of IEC 227 or IEC 245, and is listed by a recognized European testing laboratory (i.e., HAR Cordage).

6.1.4.8 Emergency Shutdown

GFT and S2-93 specifications recommend the installation of an Emergency Power Off (EPO) push-button on all dryers to shut main power off should an "EMERGENCY" situation arise. The EPO pushbutton should be of the red mushroom-type and labeled "*EMERGENCY POWER OFF*".

NOTE

The EPO mounting height should not exceed 63.5 inches from the floor. If planning to install an EPO, it is important to provide a separate POWER ON button to return power after MAIN POWER has been shut off.


CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

If installing an EPO button, a clear PVC sleeve surrounding the EPO button is required to prevent accidental activation of the EPO.

The following diagram (Figure 6-1) is a typical Emergency Power Off or Emergency Off circuit.

Circuit Components	Description
F1	Primary protection for transformer T1
F2	Secondary protection for transformer T2
T1	24 VAC isolation transformer
SW1	Momentary POWER ON pushbutton (green)
SW2	EMO (EPO) pushbutton, red mushroom-type, 60 mm diameter with shroud
CR1	24VAC power contractor with N.O. auxiliary contact

If the input voltage is reduced to 24 VAC, SW1 energizes CR1 and is held using a CR1-AUX contact, also applying power to the dryer using a CR1-1 main contacts (120 VAC). Should an emergency arise, the operator presses the EMO pushbutton which will open the circuit and removing all AC input to the dryer.

6.1.4.9 Lighting in Work Areas

CAUTION

IMPROPER LIGHTING CAN CAUSE HAZARDOUS CONDITIONS

When performing maintenance in enclosed bays and cabinets, S2-93 safety requirements call for the lighting to be at or greater than 30 footcandles in power. Use additional lighting apparatuses where lighting is less than 30 footcandles in all work areas associated with GFT equipment.

6.1.4.10 Cassette Requirements

CAUTION

POTENTIAL PRODUCT OR EQUIPMENT DAMAGE!

Using the wrong cassette in the dryer may cause damage to the labyrinth seal and rotor. Ensure the serial number of the cassette matches the number on the rotor. See Section 3, Operations, for location of these numbers. The dryer is balanced with the cassette, thus, never run a cycle without the cassette installed in the process bowl.

6.1.4.11 Chemical Compatibility

CAUTION			
		TYPICAL CHEMICAL USAGEThese dryers are designed to operate with the following industry standard chemistries:• DI Water• SC1 = DI Water, H2O2, NH4OH• SC2 = DI Water, H2O2, HCI	

6.1.5 Installation Procedures – Single Dryer

The following instructions are for a typical single-dryer installation. Your requirements may vary from these instructions.

- 1. Ensure all facilities are off before install procedures are performed.
- 2. Remove the dryer from the shipping carton and plastic wrapping. Remove the screws from the bottom of the shroud, then slide the shroud backwards off the dryer. Visually inspect the dryer, verifying that all fasteners are tight.
- **3.** Set the dryer over the cutout of the wet system. Secure the dryer to the wet system with screws through the holes on the right and left sides of the dryer's base plate at the rear.
- 4. While standing behind the basemount assembly, use the handles on either side of the dryer to slide the it into place in the basemount assembly.

Ensure the polypropylene stop is against the front of the basemount and the gasket is properly seated on the side rails.

- 5. Reinstall the cover and shroud screws. At the dryer's rear, slide the cover forward in the slides until the locator brackets on the cover engage the front panel.
- 6. If not already install, locate the 2-inch flex hose at the bottom of the dryer. Connect this hose to the drain inlet on the drain box with the supplied clamp.
- **7.** Install the controller, panel and any optional components in their designated locations.
- **8.** Connect the DI water bypass line (3/16-inch Tygon tubing) to the hose barb on top of the drain box.
- **9.** Connect the drain outlet on the bottom of the drain box to the facilities drain. Use Teflon tape when making this connection.
- **10.** Connect both nitrogen fittings on the dryer to the facilities nitrogen supply.

NOTE

The dryer requires two independently plumbed nitrogen lines. The system nitrogen line connects to the 3/8-inch fitting; the secondary nitrogen line connects to the 1/2-inch fitting.

- **11.** Connect the DI IN fitting to the facilities DI water supply. Connect the DI RETURN fitting to the facilities recirculation system. Use 3/8-inch OD Teflon tubing for both connections.
- 12. Connect the female end of the power cable and the female end of the data cable to the two electrical connectors on the back of the dryer. The power cable (P106) connects to R106; the data cable (P105) connects to R105.

- Route these two cables to the controller. The power cable male end (P101) connects to R101; the male end of the data cable (P102) connects to R102.
- 14. Route the resistivity probe cable from the drain box to the resistivity monitor. Connect the female end of the cable (P107) to the connector labeled PROBE (R107) on the resistivity monitor.
- 15. Connect the female end of the resistivity cable (P108) to the connector on the resistivity monitor labeled CONTROL BOX (R108). Route the resistivity cable to the control box and connect the male fitting (P100) to the connector labeled RESISTIVITY MONITOR (R100).
- 16. Connect the male end of the control panel cable (P103) to the connector on the controller labeled KEYPAD (R103). Route the cable to the control panel and connect the female end to the connector on the back of the control panel. Use two machine crews to secure each end of the control panel cable to its respective connector.
- 17. Plug the power cable into the receptacle on the controller labeled R99. Plug the AC power cord on the controller into the facilities electrical supply. Power on the dryer. The LEDs on the Keypad will illuminate. The RPM LED will display zeros briefly. After to rotor has automatically indexed, the parameters for the last recipe used will be display and the dryer is ready of testing. Go to Section 6.2, After-Install Test Procedures.

6.1.6 Installation Procedures – Double-Stack Dryer

The following instructions are for a typical double-stack dryer installation. Your requirements may vary from these instructions.

- 1. Be certain all facilities are off before installation procedures are performed.
- 2. Remove the dryers from the pallet, shipping carton and plastic wrapping. Remove the screws from the bottom of the shrouds, then slide the shrouds backwards off the dryers. Visually inspect each dryer, verifying that all fasteners are tight.
- **3.** Roll the stack into the fab area. Level the dryers using the leveling pads.
- 4. Connect the drain outlet on the frame to the facilities drain.
- 5. Use ¼inch Teflon tubing to connect the facilities DI water and N₂ facilities to the connectors on the facility panel located on the bottom left of the frame as you face the dryers. Use ¼inch tubing to connect the DI Return outlet to the facilities recirculation system. Use ¼inch tubing to connect the facilities CDA supply to the CDA inlet.

- 6. If required, use a customer-supplied RS-232-C cable with a male 25-pin D connector and connect the host computer to the RS-232-C female interface connector on the control box.
- **7.** Connect the two AC power lines to the facilities electrical supply.
- Turn the facilities ON. Verify the RG1 (N₂ In) is set to 45 psi on each dryer. Go to Section 6.2, *After-Install Test Procedures-1600-55 Automatic Door*, or Section 6.3, *After-Install Test Procedures-1600-55 Manual Door*.

NOTE

If the optional EPO feature was ordered, verify that the AC power cord is connected to the receptacle(s) on the EPO rather than directly to the facilities supply. Also verify that the EPO receptacle on the contactor box is connected to the EPO switch on the dryer's cabinet.

6.2 After-Install Test Procedures 1600-55 - Automatic Door

The following procedure is written for the trained technician.

Serial Number:	Location:
Customer:	Voltage: Hz:
Rotor P/N:	Carrier Type:
Rotor S/N:	Bal Std:
Hinge Direction: Left // Right	Software #:
Inspected By:	Date:
Customer Signature:	Date:

	NOTE					
C	Do not power up the dryer prior to visual/hardware checks.					
1.	Verify that all equipment and options according to the sales order are installed on the dryer.					
2.	Check for GFT labels on Keypad, Resistivity Monitor, Controller & Centrifuge.					
3.	Visually inspect dryer for:					
	Bowl for scratches and dents.					
	Cables / connectors for cuts/general condition.					

		NOTE
		es were modified, check for crimps and spliced wires by ing backshells.
	•	Verify all cables are connected properly.
	•	N ₂ and DI connections are correct and tight.
	•	All hardware is tight.
	•	Panels and covers for damage.

	4. Open control dryer and verify the following:
	Resistivity PCB location (if applicable)
	SECS II S/W installed (if applicable)
	Check for loose screws, wires, all hardware.
	5. Check fuse sizes and labels:
	Main 15A, Heater 15A, Motor 15A, Controller 3A.
	6. Check door alignment to bowl.
	7. Check bladder for cleanliness and cuts.
\square	8. Remove the rotor.
	9. Verify hub set screws are tight:
	Verify that the seal plate is centered with the hub.
	Ensure that the hub space is:
	2-5 Inch rotors .050 inches
	6 inch rotors .080 inches
	10. Install rotor. Tighten down screws in proper sequence. (12, 6, 9, 3 O'clock position)
	NOTE
	Do not operate the dryer without a carrier.
	11. Install proper carrier with correct load requirements.
	NOTE
	Prior to connecting facility DI to SRD, run DI into drain for 5-10 minutes to discard particles in line.
	12. Plug in dryer. Remove shroud Cover & Turn on facility DI and N_2 and check for leaks.
	13. Power up dryer. Check all valves, switches and regulators.

 Start dryer. Check for DI leaks in the manifold, connections, drain box and tubing.
15. Verify DI / N_2 check valve. (no DI in N_2 line during rinse).
16. Verify that there are no N ₂ leaks at connectors, manifold, static eliminator, clean coil, fittings, regulators, switches, gauges.
17. Verify maximum speed programming limitations. (3200 RPM)
18. Verify resistivity functions:
Resistivity override
Timed resistivity
19. Verify all L.E.D. functions on keypad.
20. Verify no excessive vibration.
21. At end of cycle, verify index position is exactly at the 12 O'clock position. If not, adjust CAM mechanism and optical sensor.
22. Verify that bladder switch PSW-2 is set to 16 PSI. If not, adjust. Verify loss of lid seal pressure operation and display on the keypad controller.
23. Adjust bladder N_2 regulator RG2 to 21 PSI.
24. Adjust N_2 switch PSW-1 to 13 PSI dynamic. Verify loss of N_2 pressure operation and display on the key pad controller.
25. Adjust N_2 regulator RG1 to 23 PSI dynamic.
26. Adjust index switch PSW-3 to 35 PSI static.
27. Adjust index regulator RG3 to 40 PSI static.
28. Verify static eliminator is not arcing.
29. Check thermostats. (Reconnect rim heater if applicable).
30. Verify the clean coil protection circuit by disconnecting the white wire on the relay coil. Push the start button, the "N ₂ pressure" lamp should display on the keypad.

31. Verify "Dead Man" function and no bladder leaks:
Start dryer then turn off power.
Wait 5 minutes to verify no leaks.
Exercise bladder relief valve and verify bladder deflates.
• Turn power on and verify power failure display on the keypad controller.
32. Verify that the N ₂ purge shuts off 30 seconds after completion of a cycle.
NOTE
SECS II S/W is required on all automatic rinser/dryers. Host SECS II S/W is required for remaining tests.
NOTE
Exercise these functions throughout the remainder of the tests with
the customer.
33. Connect the host computer to the dryer and boot up the host test S/W.
34. Power up the dryer to the standby condition and clear the error register from the host.
35. From the host give the "Door Open" command and verify a smooth opening within 5 to 6 seconds. Adjust needle valve if necessary.
36. From the host give the "Door Close" command and verify a smooth closing operation within 5 to 6 seconds. Adjust needle valve if necessary.
 37. From the host give the "Index Initialize" command and verify smooth operation and indexing at exactly 12 O'clock. Adjust air cylinder if necessary. Re-adjust mechanism if necessary.
38. Exercise the start and stop functions throughout the test from the host.
Verify from the host:
Resistivity bypass command.

	•	Recipe editing function.
	•	Recipe select function.
	•	Changing recipe parameters function.
	•	Looking at recipes.
	•	Reading machine status.
39.	. Cheo	ck the following error conditions using the host S/W:
		NOTE
A	After ev	very test, reset the error register.
	•	Power failure (ER = 1): while dryer is running turn power off.
	•	Index failure (ER = 2): turn down RG3 below 35 PSI while dryer is running.
	•	Stop dryer, it should not index.
	•	Low N_2 pressure (ER = 8) : Turn RG2 below 13 PSI while dryer is running.
	•	Low bladder pressure (ER = 16) :Turn down RG1 below 17 PSI while dryer is running.
	•	Door open while in running mode (ER = 32) : Push bladder relief valve and open door.
	•	Door open failure (ER = 128) :Give door open command, hold door shut.
	•	Door close failure (ER = 64): Give door close command, hold door open.
40.	. Durii	ng hose interface test re-verify the following:
	•	Resistivity bypass.
	•	Recipe and step functions.
	•	Max speed 3200 RPM.
	•	All heater thermostats.

	Static eliminato	r.	
	All valves, switc	ches, connections.	
	Direction of rota	ation of rotor.	
	Door switch and controller.	d verify door failure display on th	e keypad
	Verify accelerat	ion rates for:	
	Rinse: 0-30	00 RPM, 7-10 seconds.	
	Dry: 300-3	000 RPM, 60-70 seconds	
41.	Assist particle test re	quired? Y/N	
 42.	Nipe down dryer and	verify cleanliness.	
 43.	Re-torque seal and lo	ock tight all accessible hardware	
44.	Replace covers and t	ighten all screws.	
45.	Program and record t	he desired process parameters.	
	Rinse Time:		seconds
	Rinse Speed:		RPM
	Dry Time:		seconds
	Dry Speed:		RPM

<u>COMMENTS:</u>			

6.3 After-Install Test Procedures 1600-55 - Manual Door

The following procedure is written for the trained technician.

Serial Number:	Location:
Customer:	Voltage: Hz:
Rotor P/N:	_ Carrier Type:
Rotor S/N:	Bal Std:
Hinge Direction: Left // Right	Software #:
Inspected By:	Date:
Customer Signature:	Date:

NOTE
Do not power up the dryer prior to all visual and hardware checks being verified.
 Verify that all equipment and options according to the sales order are installed on the dryer.
 Check for GFT labels on Keypad, Resistivity Monitor, Controller & Centrifuge.
 3. Visually inspect dryer for:
Bowl for scratches and dents.
Cables / connectors for cuts/general condition.
NOTE
If cables were modified, check for crimps and spliced wires by removing backshells.
Verify all cables are connected properly.
• N ₂ and DI connections are correct and tight.
All hardware is tight.

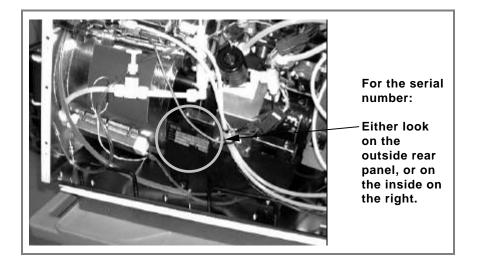
	• Check brake cylinder retainer bolt for tightness and verify dimension between brake pad and sprocket is between 1/8" and 3/16".
	Panels and covers for damage.
4.	Open control dryer and verify the following:
	Resistivity PCB location (if applicable)
	SECS II S/W installed (if applicable)
	Check for loose screws, wires, all hardware.
5.	Check fuse sizes and labels:
	• Main 15A, Heater 15A, Motor 15A, Controller 3A.
6.	Check door alignment to bowl.
7.	Check door micro switch for alignment.
8.	Check bladder for cleanliness and cuts.
9.	Remove the rotor.
	. Verify hub set screws are tight:
	• Verify that the seal plate is centered with the hub.
	• Ensure that the hub space is:
	2-5 inch rotors .050 inches
	6 inch rotors .080 inches
11.	Install rotor. Tighten down screws in proper sequence. (12, 6, 9, 3 O'clock position)
	NOTE
	Do not operate the dryer without a carrier.
12.	Install proper carrier with correct load requirements.
I	
	NOTE

	13.	. Plug in dryer. Remove the shroud covers and turn on facility DI and N_2 and check for leaks.
	14.	Power up dryer. Check all valves, switches and regulators.
	15.	. Start dryer. Check for DI leaks in the manifold, connections, drain box and tubing.
	16.	. Verify DI / N_2 check valve. (No DI in N_2 line during rinse).
	17.	. Verify that there are no N_2 leaks at connectors, manifold, static eliminator, clean coil, fittings, regulators, switches, gauges.
	18.	. Verify maximum speed programming limitations. (3200 RPM)
	19.	Verify resistivity functions:
		Resistivity override
		Timed resistivity
	20.	. Verify all L.E.D. functions on keypad.
	21.	Verify no excessive vibration.
	22.	At end of cycle, verify dryer indexes properly and indexes at approximately 12 O'clock.
	23.	. Verify that bladder switch PSW-2 is set to 16 PSI. If not, adjust. Verify loss of lid seal pressure operation and display on the keypad controller.
	24.	. Adjust bladder N_2 regulator RG2 to 21 PSI.
	25.	. Adjust N_2 switch PSW-1 to 13 PSI dynamic. Verify loss of N_2 pressure operation and display on the key pad controller.
	26.	. Adjust N_2 regulator RG1 to 23 PSI dynamic.
	27.	Adjust index switch PSW-3 to 35 PSI static.
	28.	Adjust index regulator RG3 to 40 PSI static.
\square	29.	. Verify static eliminator is not arcing.
	30.	. Check thermostats. (Reconnect rim heater if applicable)

31. Verify the clean coil protection circuit by disconnecting the white wire on the relay coil, push the start button, the "N ₂ Pressure" lamp should light.
32. Verify "Dead Man" function and no bladder leaks:
Start dryer then turn off power.
Wait 5 minutes to verify no leaks.
Exercise bladder relief valve and verify bladder deflates.
 • Turn power on and verify power failure display on the keypad controller.
33. Verify that the N_2 purge shuts off 30 seconds after completion of a cycle.
34. Is SECS II operation required? Y/N
35. Verify acceleration rates for:
Rinse: 0-300 RPM, 7-10 seconds
Dry: 300-3000 RPM, 60-70 seconds
36. Assist with particle check required? Y/N
37. Wipe down dryer and verify cleanliness.
38. Re-torque seal and locktite all accessible hardware.
39. Replace covers and tighten all screws.
40. Program customer process parameters and record.

Rinse Time:	 seconds
Rinse Speed:	 RPM
Dry Time:	 seconds
Dry Speed:	 RPM

<u>COMMENTS:</u>	
	_
	_


THIS PAGE INTENTIONALLY LEFT BLANK.

7 STANDARD SPARE PARTS LISTS

7.1 How to Order

When ordering please have your dryer's serial number ready for reference. This number can be found on the back panel of the dryer. If this label has been damaged or removed, the next best area to look for the dryer's serial number is to remove the cover to the dryer and look on the inside as shown below.

To contact GFT to order spare parts, please call GFT's main phone line at: (714) 445-2000. Ask for the Inside Sales department.

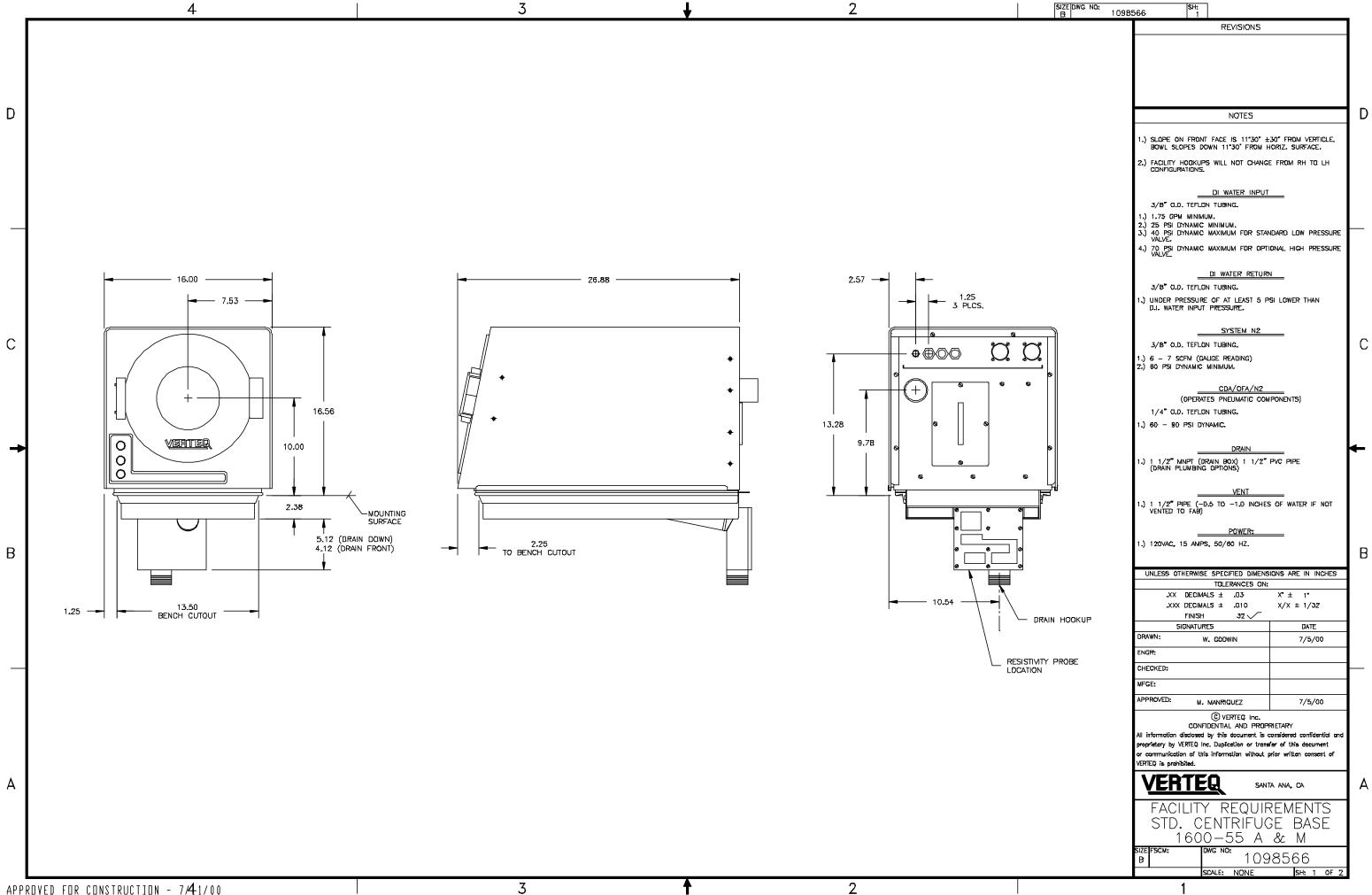
7.2 Combined List

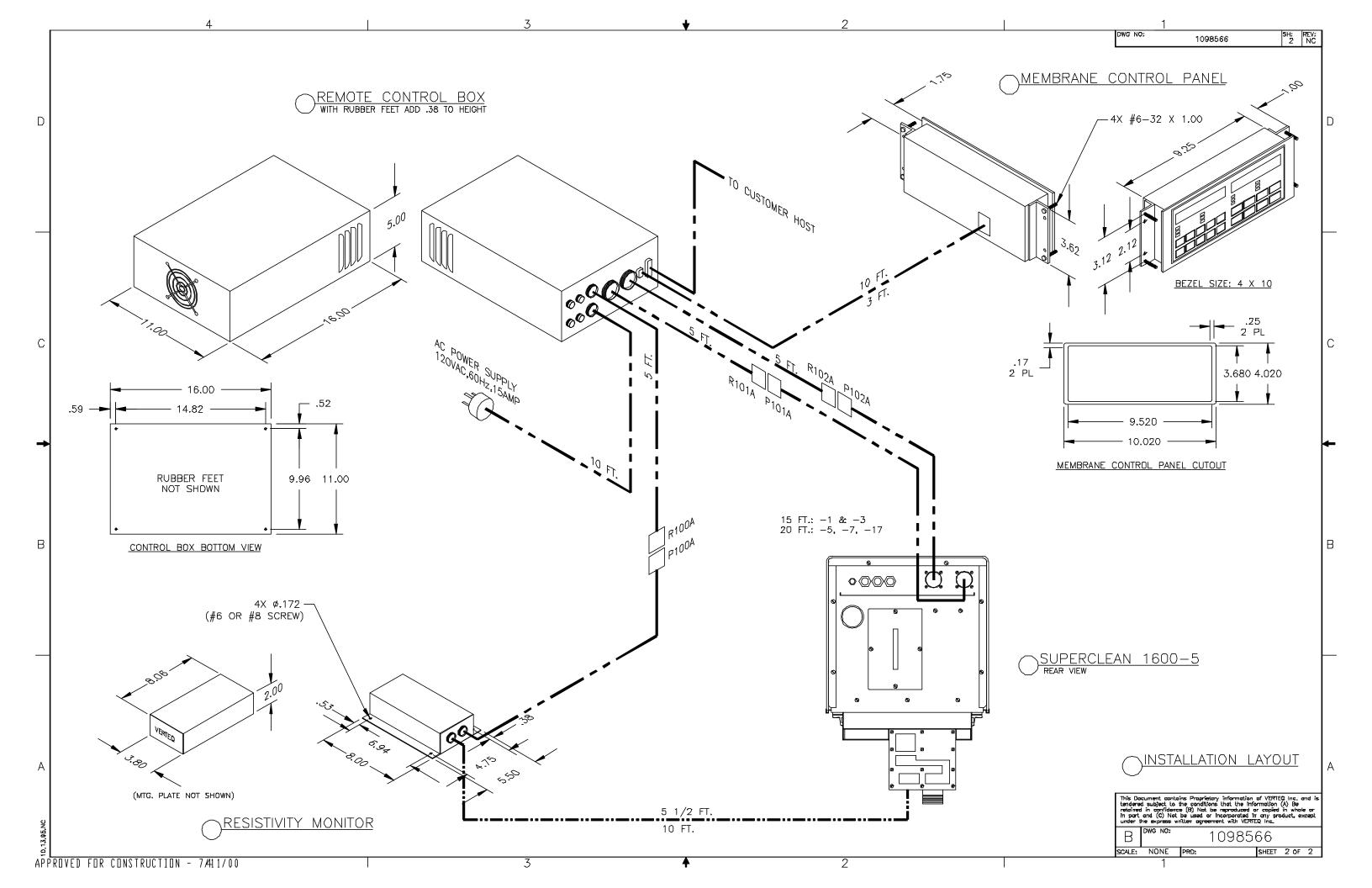
The following list of spare parts is for both the 1600-55 A and 1600-55 M. Also see the additional separate lists unique to each model type. If the part is called out in a preventive maintenance procedure, the frequency and procedure number is also listed.

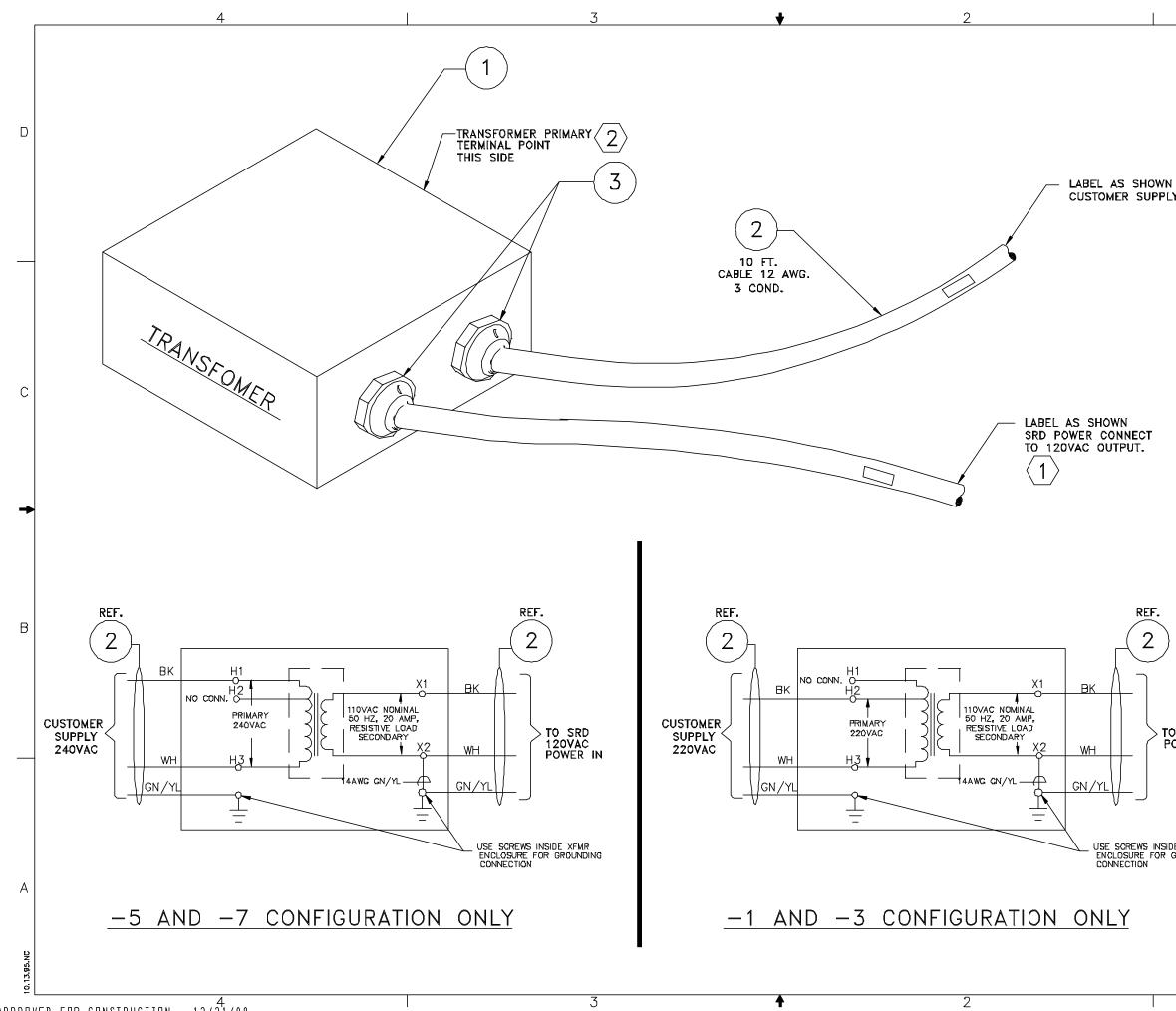
For CE Marked parts:

- if a part is listed with a "**Yes**", then that part can be used for non-CE Marked dryers as well as CE Marked dryers
- if a part is listed with "**Only**", then that part is for CE Marked dryers only. CE Marked dryers should use this part only
- if a part is listed with a "**Non**", then that part can be used only on non-CE Marked dryers. Do not order this part for CE Marked dryers

Spare Parts List for the 1600-55 A and M								
Description Part No. CE Qty. PM Procedure Marked Marked Frequency No.								
Actuator, sleeve maintained	4115778	Yes	1					
Actuator, switch, sleeve, mom	4115777	Yes	1					
Controller, 1600-55 Standard with 1020046.005, with 1073952.7 Label	1075227.755	Yes	1					
Encl assy resist monitor hard	1067786.5	Yes	1					
Filter, inline gas (1/4-inch npt)	4118199	Yes	1	Semi-Annual	4.3, 4.4			
Gasket, drain box	1067878.1	Yes	1					
Gasket, N2	1065681.1	Yes	1					
Gasket, static eliminator	1059696.1	Yes	1		4.4			
Heater, blanket 5.00 X 5.00	1064827.1	Yes	2		4.13			
Heater, strip 1 X 36	1064832.3	Yes	1		4.13			
Key, Motor	1062608.1	Yes	1					
Keypad Assy, Hardened, 1600	1083301.1	Only	1					
Keypad Assy, S/C1600-5	1067601.1	Non	1					
Motor, 1/2Shaft X 2 Output	4115758	Yes	1					
Nozzle, TFE Spray Veejet	4117876	Yes	6		4.4			
Probe, resistivity CE Marked	1067803.5	Only	1					
Probe, resistivity & cable assy	1067803.1	Non	1					
Relay, 2 pole, 20 amp	4115243	Yes	1					
Ring, o viton .208idx.07w	4120866	Yes	1	Semi-Annual	4.9			
Ring, o, epdm	4114316	Yes	1	Semi-Annual	4.7			
Ring-o, epdm, viton	4115771	Yes	1	Semi-Annual	4.7			
Ring-o, Viton	4115770	Yes	1	Semi-Annual	4.7			
Screw, allen socket, f-hd, w/coat	1069144.3	Yes	4					
Seal, gasket DI	1062531.1	Yes	1		4.4			
Seal, Labyrinth Plate	1062546.1	Yes	1	Semi-Annual	4.7			
Seal, Rect, Door, 1600	1064788.1	Yes	1	Semi-Annual	4.9, 4.4			
Shock	4116634	Yes	2		4.4			
Shock	4116635	Yes	6		4.4			
Snubber, RC, 1000HM, .1UF600V	4118741	Yes	1					
Static Eliminator Assy	1069254.501	Yes	1	Semi-Annual	4.2, 4.4			
Switch, boot, 4897	4116783	Yes	1					
Switch, contact blk	4115782	Yes	1					
Switch, contact block	4115781	Yes	1					
Switch, lens, 4898	4114320	Yes	1					
Switch, lens, clear	4116897	Yes	1					
Switch, lens, green 4899	4114218	Yes	1					
Switch, lens, red	4114217	Non	1					
Switch, lens, yellow	4114219	Yes	1					
Switch, mtg, flange	4115779	Yes	1					

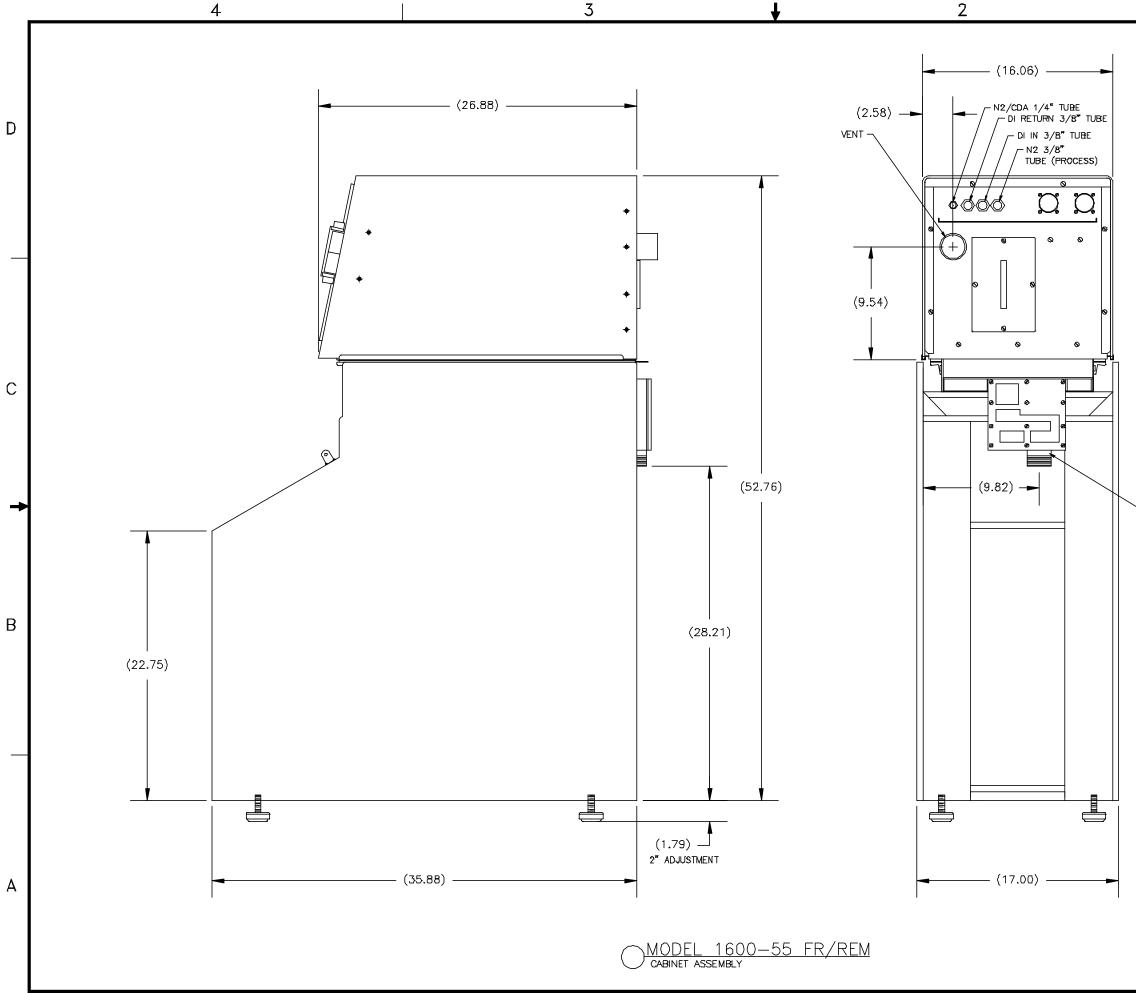

Spare Parts List for the 1600-55 A and M						
Description	Part No.	CE Marked	Qty.	PM Frequency	Procedure No.	
Switch, pressure	4114327	Yes	1			
Thermostat	4118312	Yes				
Thermostat 4131	4116362	Yes	1			
Thermostat, setpoint 70d	4117376	Yes	1			
Valve Assy Spares DI HP	1070206.11	Yes	1			
Valve Assy Spares DI LP	1070206.5	Yes	1			
Varistor, 150 vac	4117725	Yes	1			

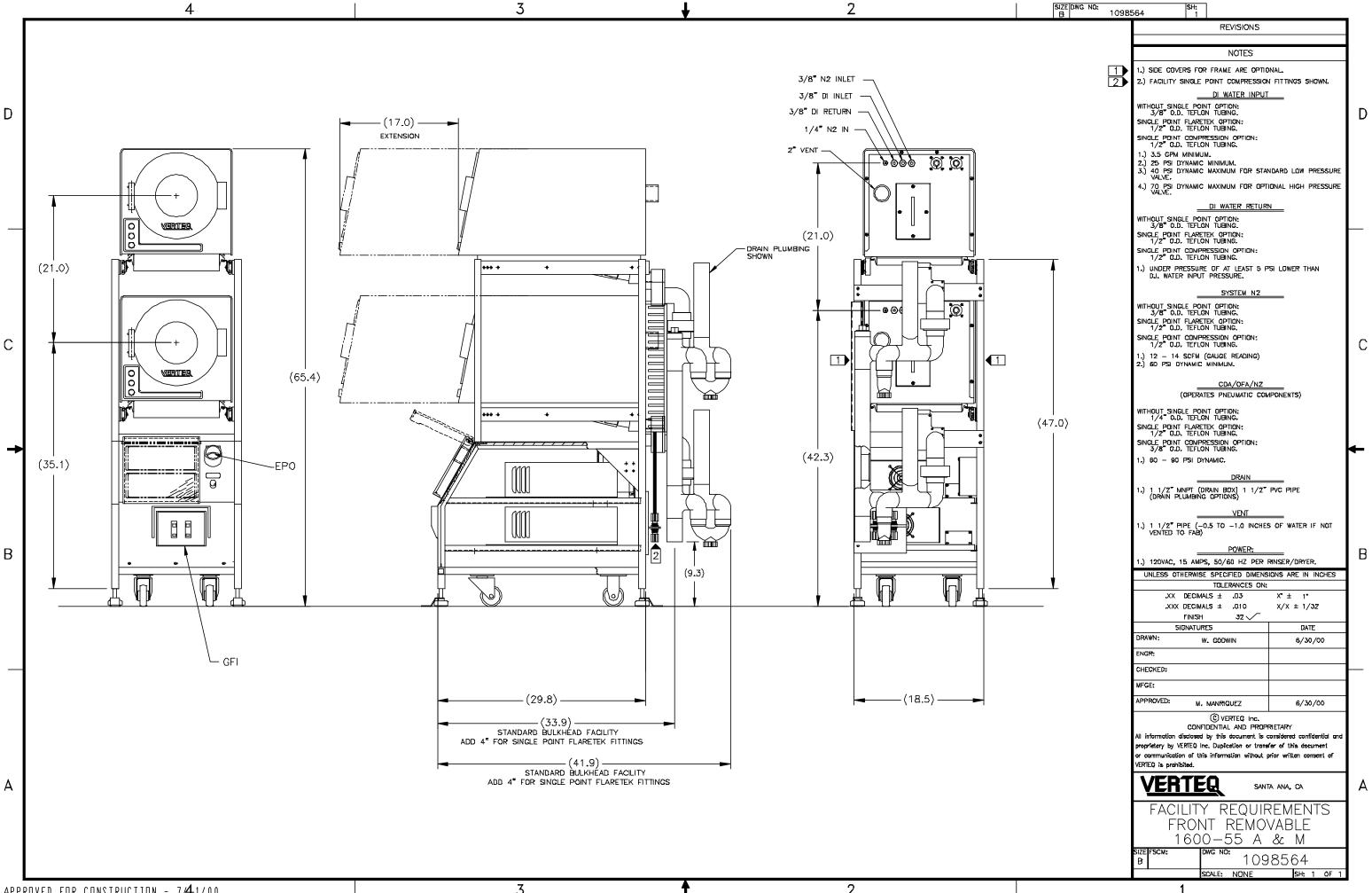

7.3 Additional Lists

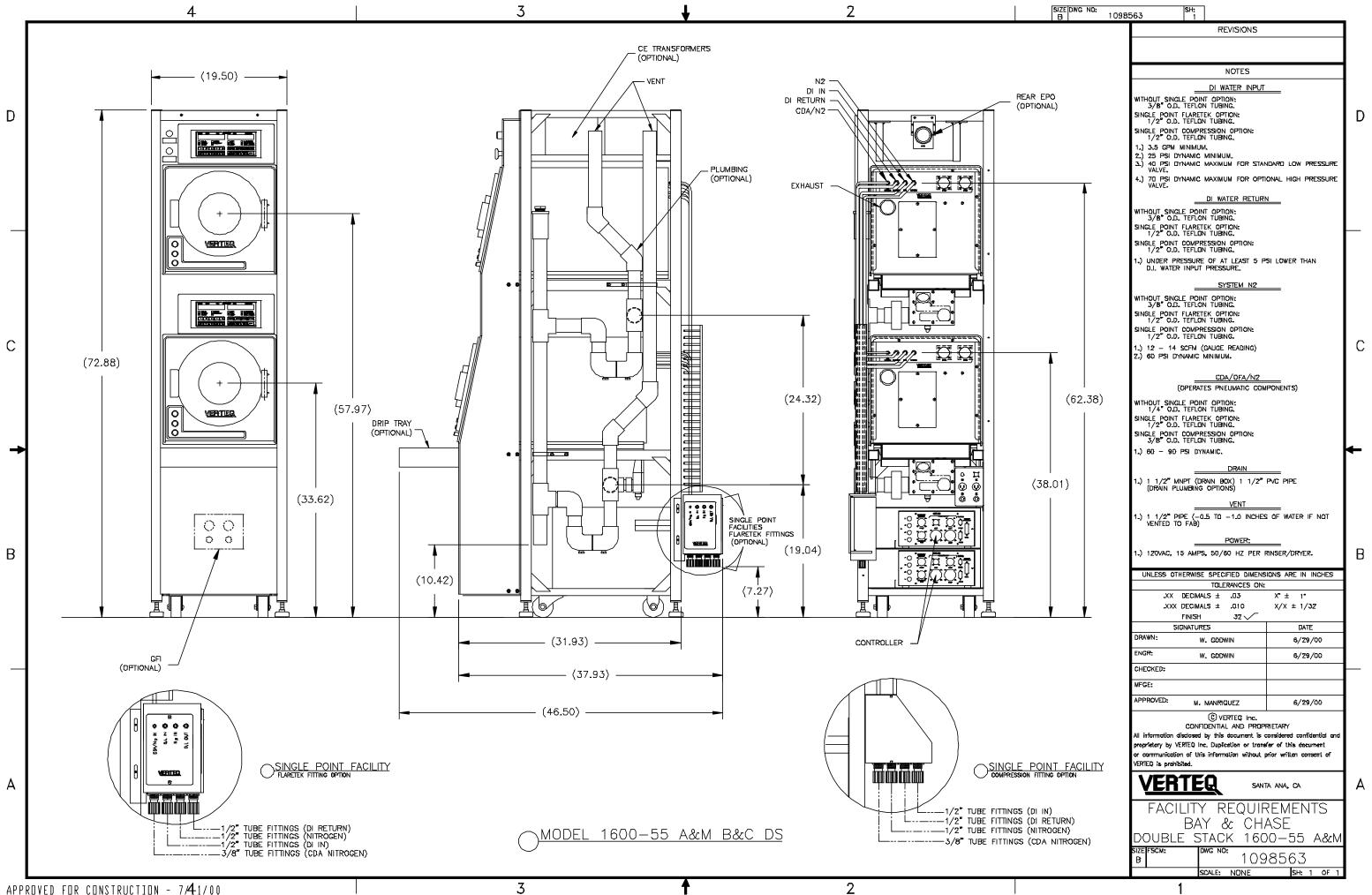

Additional Spare Parts List for the 1600-55 M Only						
Description Part No. CE Qty. PM Procedure Marked Marked Frequency No.						
Sensor, optical assy	1065747.1	Yes	1			

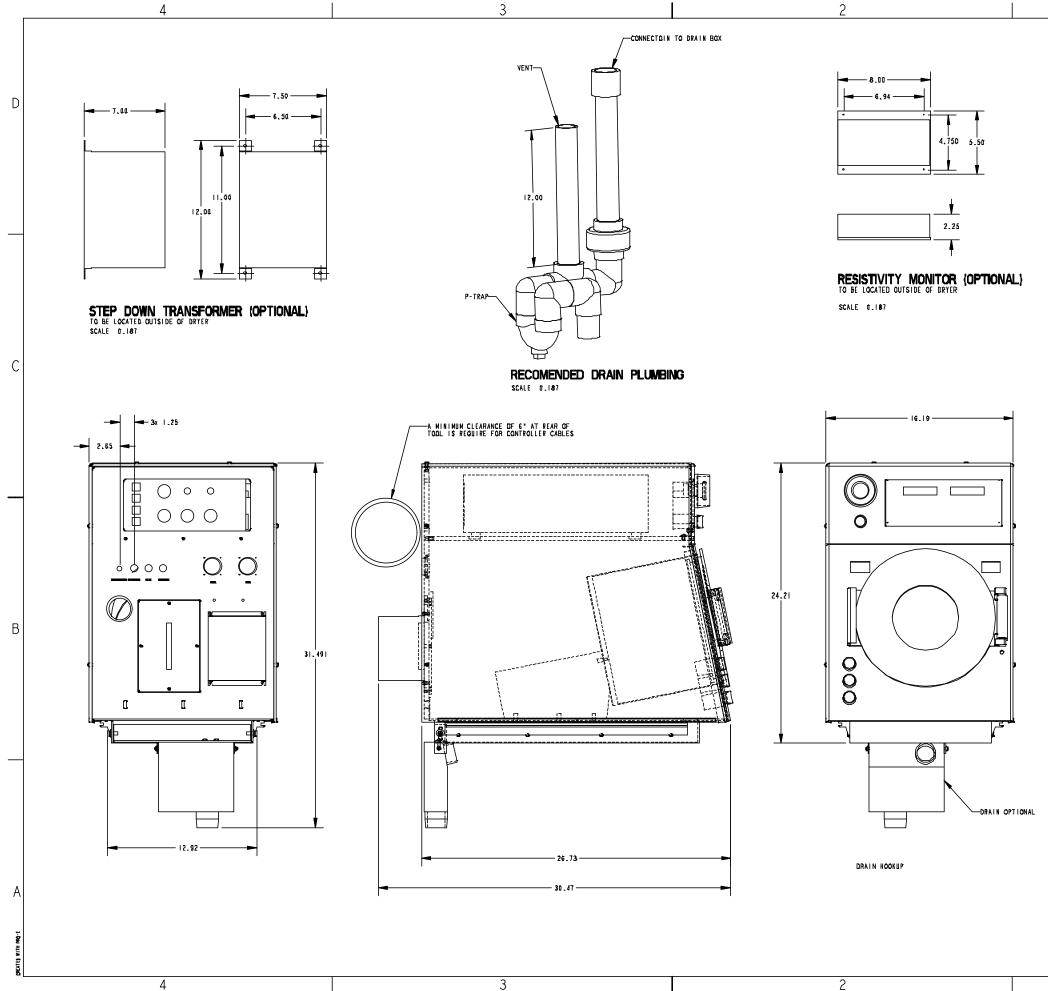
Additional Spare Parts List for the 1600-55 A Only						
Description Part No. CE Qty. PM Procedure Marked Frequency No.						
PCB Assy, optical sensor	1067811.1	Yes	1			
Switch, door cylinder	4119822	Yes	1			
Switch, mini per 10 63084-1	4115848	Yes	1			

THIS PAGE INTENTIONALLY LEFT BLANK.

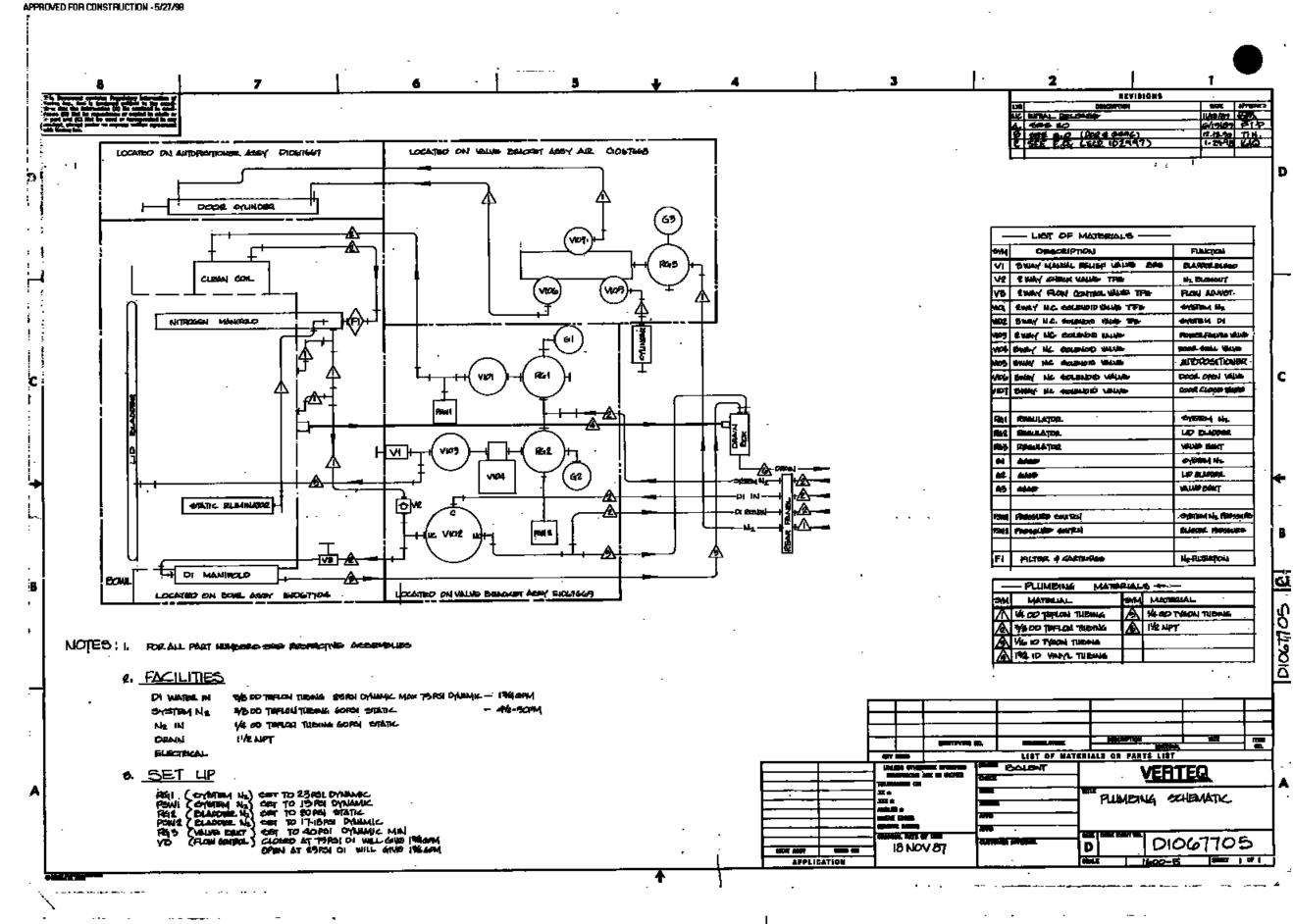


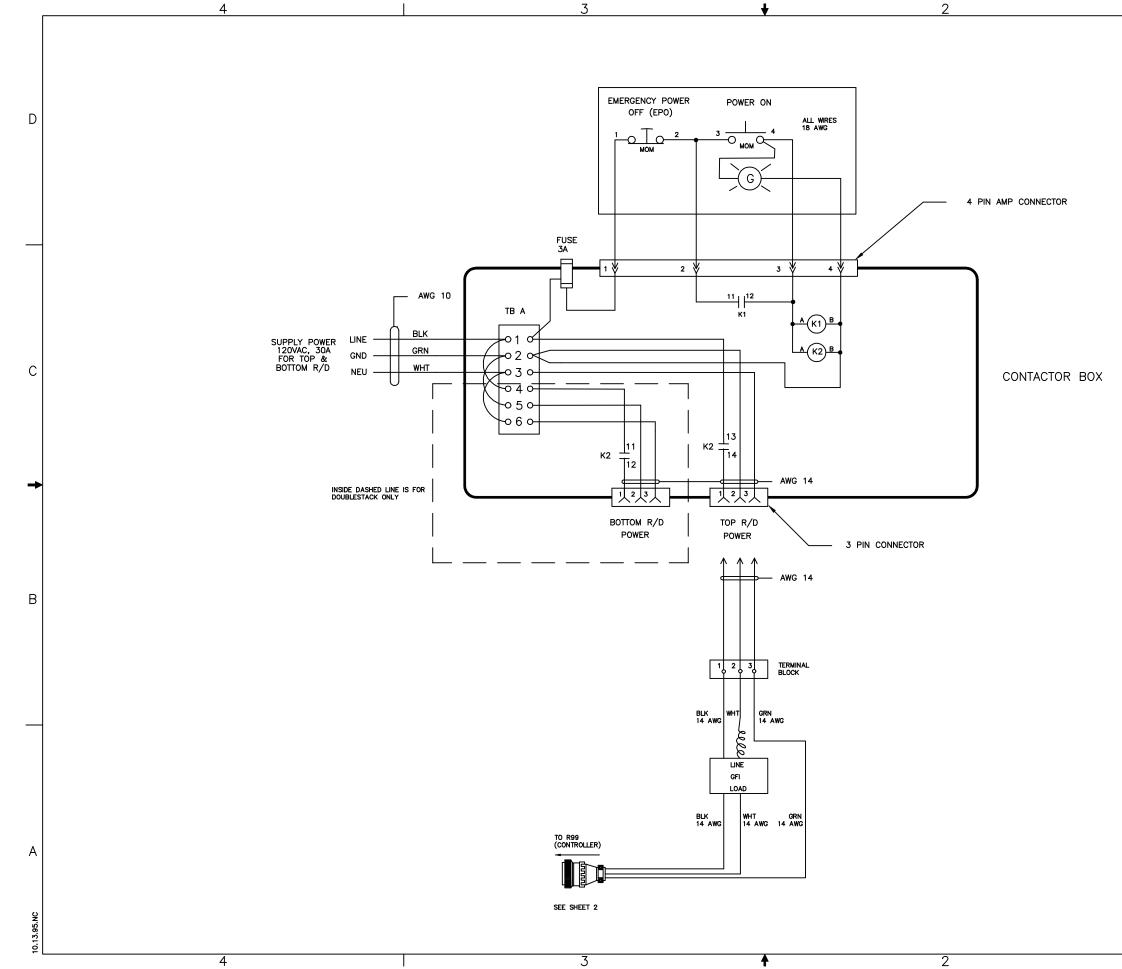

APPROVED FOR CONSTRUCTION - 12/21/00

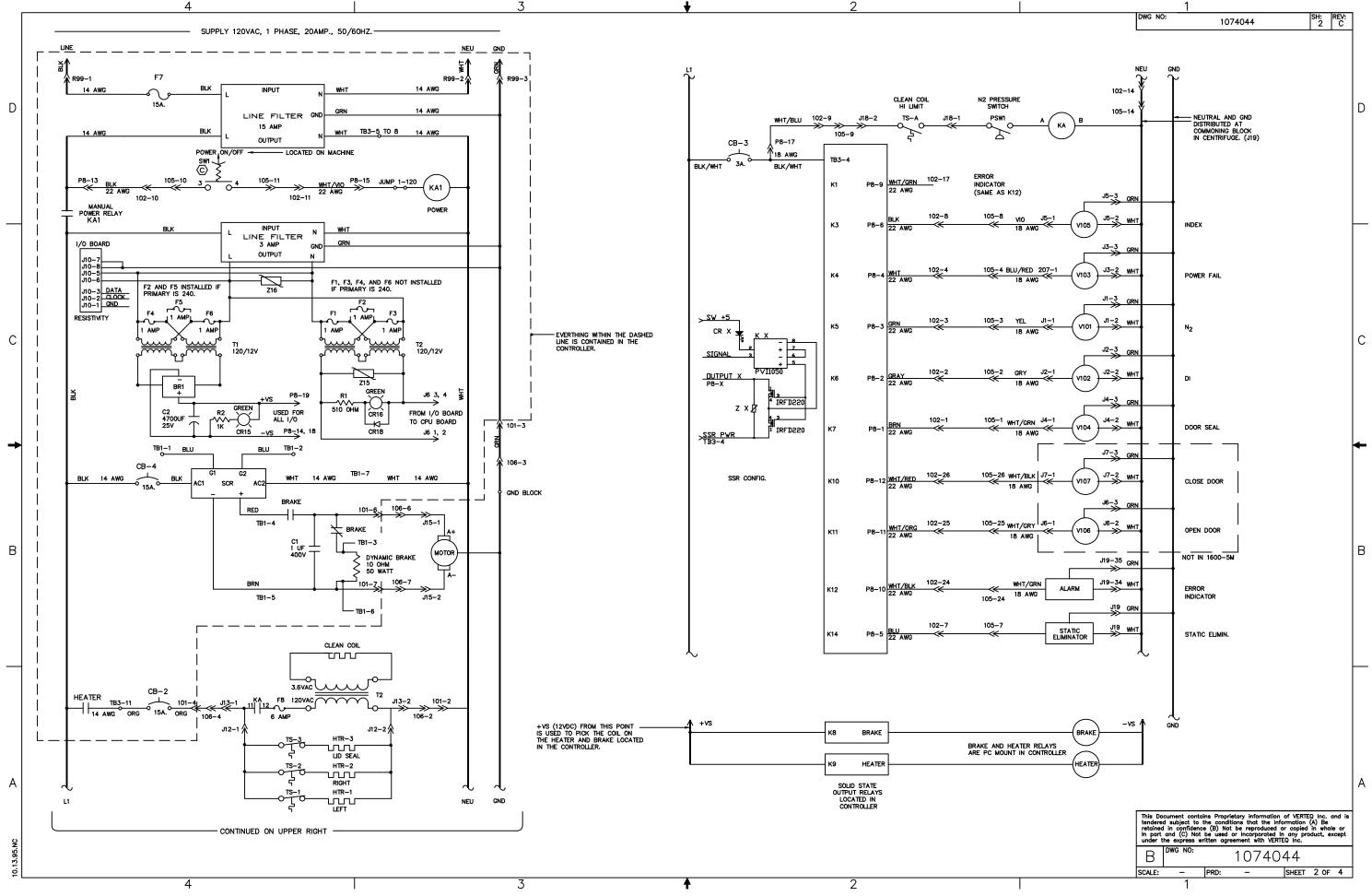

		1						
	DWG NO:	;	1087	7359		5H: 1	REV: D]
			REV	ISIONS]
	REV		DESCRIPTION		DAT		APPD]
	NC		TIAL RELE		8-4-		R.W.W	-
	A			3 CONFIG.				1
	B	ADDED ADDED			3-25- 11/09			1
			ED LABEL		11/13			D
	E			IR SCHEM.				
]
WN								
PLY 220VAC, 50HZ.								
			N.L					-
			N	DTES				-
		FOR SI	RD 160	0-3, RE	MOVE	т⊦	Æ	
	1 \ • /			CTOR, B				
		CONNE	CTING 1	TO THE	RANS	SFO	RMER	ł
	$\langle 2 \rangle$	TDANC		TO BE		ודרי		
							/ .	
								С
								ľ
	-7	XFMR.	240/120	VAC "CE" [)S			
	-5			VAC "CE" [
	-3			VAC "CE" [-
								-
	-1	хгмк,		VAC "CE" 5	SINGLE			
	CONFIG		DE	SCRIPTION				B
	MATERIA	L SPEC		FINISH SPI	.C			
	UNLES	SS OTHERN		ED DIMENSION	NS ARE	IN IN	CHES	1
		.XX DEC	TOLER	ANCES ON:	X* ±			{
TO SRD 120VAC POWER IN		.XXX DEC			x/x ±			
	DEAL	SIGNA				ATE		\vdash
	DRAWN:	THA	NH NGUY	EN	AUG O	1, 1	997.	4
	ENGR:							
	This Doc tendered	ument cont subject to	tains Propriet the condition	ary information ns that the inf	of VERTE ormation	(A) B	z.undis le	
	under th	and (C) No e express	t ber used or written ggreen	ary information ne that the information incorporated i ment with VERT	n copied n ciny pro EQ: Inc.	nt W zduct,	except	
								1
ISIDE XFMR XR GROUNDING					_			{
	VE	RT	EQ					1
					_			A
				NEXT ASSY		USED	ON	1
				SFOME				
		240) TO		V		
				EMBLY				
	B	DWG NO:		10873				1
	_	NONE	1					-
	SCALE:	NONE	PRD:	R/D	SHEET		OF 1	

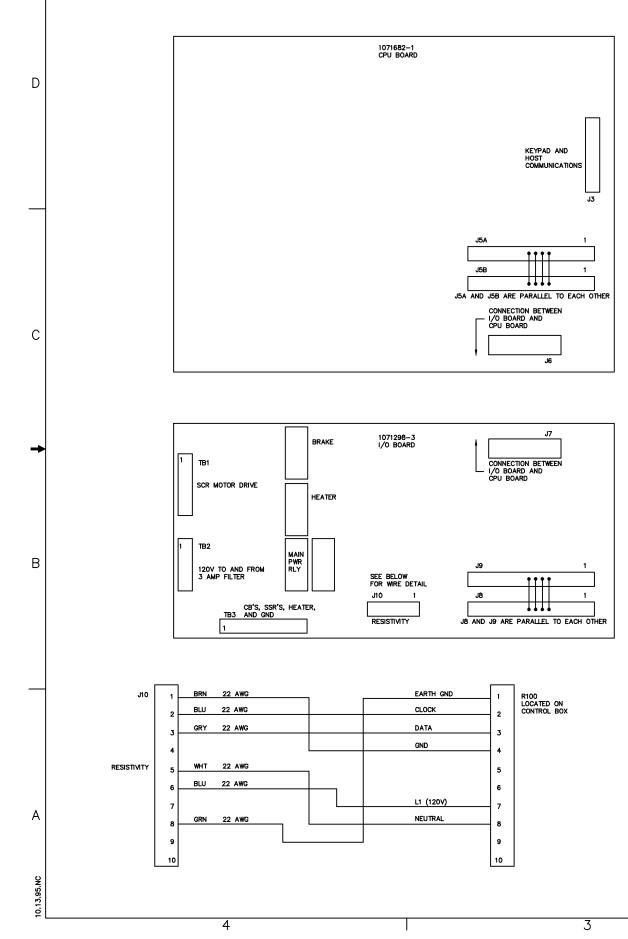


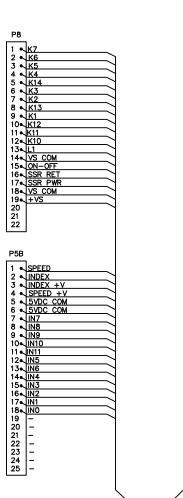
APPROVED FOR CONSTRUCTION - 7/41/00


	HZE DWG	NO: 1098:	565	SH:			
1	L ا ت	, 050.			REVISIONS		
							D
					NOTES		
			VALVE.	EFLON AINIMUM AMIC M AMIC M	INIMUM AXIMUM FOR STAN	ioaro low pressure Onal high pressure	
					WATER RETURN	4	
			3/8° 0.D. T	EFLON	TUBING.		
			1.) UNDER PRES D.I. WATER I		OF AT LEAST 5 P RESSURE.	SI LOWER THAN	
					SYSTEM N2		
			3/8" O.D. T				
			1.) 6 - 7 SCFN 2.) 60 PSH DYN/				
			(01		CDA/OFA/N2 S PNELIMATIC COM	PONENTS)	
			1/4" O.D. T	EFLON	TUBING.		
			1.) 60 - 80 PS	si dyna	MIC.		
─ DRAIN 1 1 (DRAIN DC			1.) 1 1/2" MNF (DRAIN PLUM	म (DRA ABING C	DRAIN IN BOX) 1 1/2 IPTIONS) VENT	PVC PIPE	
			1.) 1 1/2" PIPE VENTED TO	E (-0.5 FAB)	TO -1.0 INCHES	OF WATER IF NOT	
			1.) 120VAC, 15	AMPS,	POWER: 50/60 HZ.	_	В
			UNLESS OTHE	RWISE :	SPECIFIED DIMENS	IONS ARE IN INCHES	
			.XX D	ECIMALS	TOLERANCES ON:	X" ± 1"	
			.XXX Di	ECIMALS INISH	5 ± .010 32 √	X/X ± 1/3Z	
			SIGN	IATURES		DATE	
			DRAWN:	W.	GODWIN	7/5/00	
			CHECKED:				
			MFGE:				
			APPROVED:	M. M.	ANRIQUEZ	7/5/00	
			All information disc proprietary by VER	CONFIDE losed by EQ Inc. of this i	Duplication or transl	RETARY onsidered confidential and fer of this document riar written consent of	
			VER1	E	SANT	à ana, ca	А
			FACIL	ITY	•	REMENTS	
			16	500	-55 A	e cabinet & M	
			SIZE FSCM: B		C NO: 109	8565 sh: 1 of 1	
			1	لاعدا		jan: j vr j	
			•				

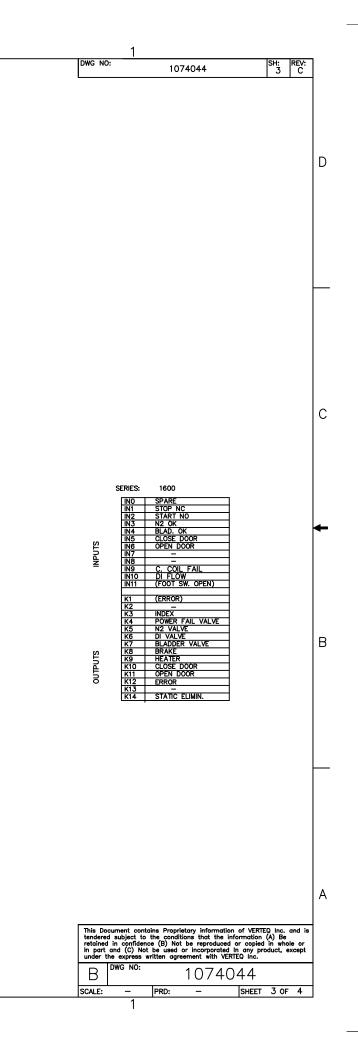


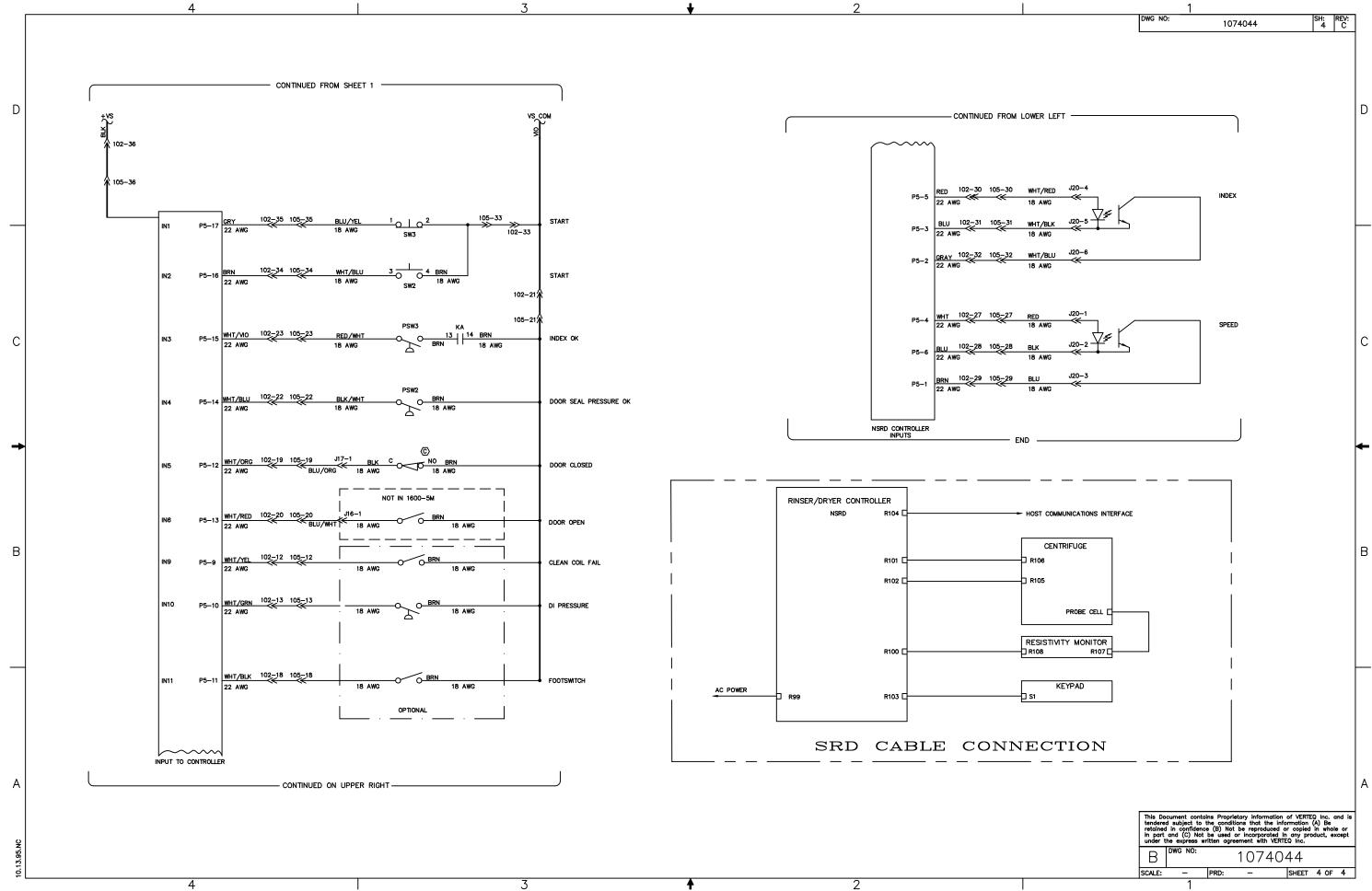

DWG NO:	10985	77	3	5H: 	REV: A
	RE	VISIONS			
REV	DESCRIPTIO	N	DATE	A	PPD
NC	INITIAL REL	. EASE	0-nul-85	q	BA
A	SEE EO		05-Nay-0	1	BA
					[
		NOTES			
I_> \$LOP	E ON FRONT FACE IS I PES DOWN II 507 FROM	I"50' FROM VEI	TICLE.		
DI WATER	LITY HOLOKUPS DO NOT	CHANGE FROM R	I TO LH CON	IFIGURA	ATIONS
1.) 1.75	. TEFLON TUBING. GPM MINIMUM.				
Z_> 25 P 3.> 40 P	SI DYNAMIC MININUN. SI DYNAMIC MAXINUN F <u>Si Dynami</u> c Maxinun F	OR STANDARD L	W PRESSURE	VALVE	E.
DI WATER	RETURN	OR OPTIONAL H	IGH PRESSRE	VALVE	E.
3/8" C.D. .> UNDE	. TEFLON TUBING R PRESURE OF AT LEAS	T 5 PSI LOWER	THAN DI NA	TER IN	NPUT
PRESSURE System No. 3/8" O.D.					
1. > 6 - 1	7 SCFM (GAUGE READIN	G.)			(
CDA/OFA/N	SI DYNAMIC MININUN. 12 S PNEUMATIC CONPONEN	T e)			
1/4" Q.D	S FREUMATIC CONFORMENTS TEFLON TUBING. PSI DYNAMIC	13)			
DRAIN	2" MNPT (DRAIN BOX)	1 1/3 BVA DI	ъг		
VENT	2 PIPE (-0.5 TO -1.0			VENTER	n
1					"
TO LAB)					
		16.1 AC			
ELECTRICA 1. ELECR 2. SUPPL 3 PHASE	L REULIREMENTS ICAL DIAGHAM:10693 Y VOLTAGE:	16.1 AC			
ELECTRICA 1. ELECR 2. SUPPL 3 PHASE	L REULIREMENTS ICAL DIAGHAM:10693 Y VOLTAGE:	Hz PS			
ELECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREQU 5. FULL 6. NUNBE 7. LARGE	L RELAREMENTS ICAL DIAGRAM:10693 Y VQLTAGE:120 V ENCY1 LOAD CURRENT10 AN R OF WIRES2 SI LOAD CURRENT.5 AN	Hz PS PS			
ELECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREQUE 5. FULL 5. FULL 6. NUNBE 7. LARGE 8. MAIN	L HEOLINGHAM:	HZ PS PS UPT_CAPACITY.			
ELECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREQUE 5. FULL 5. FULL 6. NUNBE 7. LARGE 8. MAIN	L RECAREMENTS 1CAL DIAGRAM:10693 Y VQLTAGE:120 V 	HZ PS PS UPT_CAPACITY.			
ELECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREQUE 5. FULL 5. FULL 6. NUNBE 7. LARGE 8. MAIN	L HEOLINGHAM:	HZ PS PS UPT_CAPACITY.			
ELECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREQUE 5. FULL 5. FULL 6. NUNBE 7. LARGE 8. MAIN	L HEOLINGHAM:	HZ PS PS UPT_CAPACITY.			
ELECTRICA 1. ELECR 2. SUPPL 3. PHASE 4. FREQUE 5. FULL 6. NUNBE 7. LARGE 8. MAIN 1. 20V.	L HEOLINGHAM:	HZ PS PS UPT_CAPACITY.			
ELECTRICAL 1. ELECR 2. SUPHASE 4. FREQU 5. FULL 6. NUNBE 7. LARGE 8. MAIN 1.3 IZOV	L RECLINEMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y :	HZ PS UPT CAPACITY. ANPS Z.	EC		
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FRCOUS 5. FULL 6. NUNDE 7. LARCE 8. MAIN 1.3 120V. -1 CONFIG	L RECLINEMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y :	HZ PS PS UT CAPACITY. ANPS Z. DESCRIPTION	EC		
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FRCOUS 5. FULL 6. NUNDE 7. LARCE 8. MAIN 1.3 120V. -1 CONFIG	L RECLINEMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y :	HZ PS PS UT CAPACITY. ANPS Z. DESCRIPTION	EC		
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FRCOUS 5. FULL 6. NUNDE 7. LARCE 8. MAIN 1.3 120V. -1 CONFIG	L RECLINEMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y :	HZ PS PS UT CAPACITY. ANPS Z. DESCRIPTION	EC		
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN 1. J. 120V. -1 CONFIG MATERIA	L RECLINEMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y :	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP		INCH	
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGU 5. FULL 6. NUNDE 7. LARGE 8. MAIN 1. J. 120V -1 CONFIG MATERIA	L RECURPENCINTS ICAL DIAGRAM:10633 Y VOLTAGE:120 V :	HZ PS PS AMPS Z. DESCRIPTION FINISH SP FINISH SP	INS ARE IN		
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGU 5. FULL 6. NUNDE 7. LARGE 8. MAIN 1. J. 120V -1 CONFIG MATERIA	L RECUREMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y :	HZ PS PS AMPS Z. DESCRIPTION FINISH SP		INCH	
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGU 5. FULL 6. NUNDE 7. LARGE 8. MAIN 1. J. 120V -1 CONFIG MATERIA	L REQUIREMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 V :	HZ PS PS AMPS Z. DESCRIPTION FINISH SP FINISH SP FIED DIMENSIC RANCES ON: D.03	RNS ARE IN X ^a ±	۱.۵ -	
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN 1. J. 120V. -1 CONFIG MATERIA	L RECURPENCINE ICAL DIAGRAM:10633 Y VQLTAGE:120 V :	HZ PS PS AMPS Z. DESCRIPTION FINISH SP FINISH SP FIED DIMENSIC RANCES ON: D.03	NS ARE IN X ^a ± X/X ±	1.0 - TE	
ELECTRICAL I. ELICR 2. SUPPL 3. PHASE 4. FREQU 5. FULL 5. FULL 5. FULL 7. LARGE B. MAIN I. J. 120V -1 CONFIS MATERIA UNLES	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 V COLTAGE:1043 R OF WIRES12 SI CAD CURRENT10 ACS SHORT CIR. INTERR 	HZ PS PS AMPS Z. DESCRIPTION FINISH SP FINISH SP FIED DIMENSIC RANCES ON: D.03	INS ARE IN X ^a ± X/X ± DA 28-Ju	1.0 - TE un - 00	
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 ICAD CURRENT10 R OF WIRES2 SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI CR STORE SPECIAL SI CANUES SECONDALS ± .XXX DECIMALS ± SI GNATURES B.ALMAZAN B.ALMAZAN	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 ICAD CURRENT10 R OF WIRES2 SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI CR STORE SPECIAL SI CANUES SECONDALS ± .XXX DECIMALS ± SI GNATURES B.ALMAZAN B.ALMAZAN	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 ICAD CURRENT10 R OF WIRES2 SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI CR STORE SPECIAL SI CANUES SECONDALS ± .XXX DECIMALS ± SI GNATURES B.ALMAZAN B.ALMAZAN	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 V COLTAGE:1043 R OF WIRES12 SI CAD CURRENT10 ACS SHORT CIR. INTERR 	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN 1. J 120V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 ICAD CURRENT10 R OF WIRES2 SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI CR STORE SPECIAL SI CANUES SECONDALS ± .XXX DECIMALS ± SI GNATURES B.ALMAZAN B.ALMAZAN	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 ICAD CURRENT10 R OF WIRES2 SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI CR STORE SPECIAL SI CANUES SECONDALS ± .XXX DECIMALS ± SI GNATURES B.ALMAZAN B.ALMAZAN	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:120 ICAD CURRENT10 R OF WIRES2 SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI SI LOAD CURRENT.SI CR STORE SPECIAL SI CANUES SECONDALS ± .XXX DECIMALS ± SI GNATURES B.ALMAZAN B.ALMAZAN	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP ILED DIMENSIO RANCES ON: 0.03 0.010	NS ARE IN X ^a ± X/X ± 29 - Ju 29 - Ju	I .0 — TE un - 00 un - 00	£\$
ELECTRICAA I. ELECR 2. SUPPL 3. PHASE 4. FRFOU 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. I 20V -1 CONFIG MATERIA UNLES UNLES DRAWN: ENGR:	L RECURPENTS ICAL DIAGRAM:10633 Y VOLTAGE:1063 Y VOLTAGE:10 LOAD CURRENT10 R OF WIRES2 SI LOAD CURRENT10 ACB SHORT CIR. INTER SHORT CIR. INTER ACB SHORT CIR. INTER CIR. INTER SHORT CIR. INTER SHORT CIR. INTER I CALLAR SHORT CIR. INTER SHORT CIR. INTER SHORT CIR. INTER I CALLAR I CALA	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP 0.03 0.010 tary isformatio as that the is be reproduced incerperatures they find the is be reproduced ement with YERT	X ^a ± X/X± DA 29-Ju 20-Ju 20-J	.0 — TE un-00 un-00 ⊪c. q)) Bee the whole ¢1, +1	ES Id is s or copt
EIECTRICAL EIECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGU 5. FULL 5. FULL 6. NUMBE 7. LARGE B. MAIN 1. J. 120V -1 CONFIG MATERIA UNLES DRAWN: ENGR: This Dac hander th S. FULL I. S. 120V CONFIG MATERIA UNLES	L RESURPENCINS ICAL DIAGRAM:10693 Y VOLTAGE:120 Y VOLTAGE:120 Y VOLTAGE:10 ICAD CURRENT10 R GF WIRES2 SI LOAD CURRENT10 AC3 SHORT CIR. INTERR SI LOAD CURRENT10 AC4 SI LOAD CURRENT10 AC5 SHORT CIR. INTERR I LOAD CURRENT10 I LOAD	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP DIMENSIO RANCES ON: D.03 0.010 incerperation as that the is be reproduced enent with VERT	X ⁴ ± X/X± DA 29-Ju of VERTEQ formotion (A formotion (A formotion (A) to any pre-du EQ inc.	.0 - TE un-00 un-00 10, q 0 He ¢1, +11	ES ad is b or copt N
EIECTRICAL EIECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGU 5. FULL 5. FULL 6. NUMBE 7. LARGE B. MAIN 1. J. 120V -1 CONFIG MATERIA UNLES DRAWN: ENGR: This Dac hander th S. FULL I. S. 120V CONFIG MATERIA UNLES	L REJUREMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y Y VQLTAGE:120 Y EUCY100 A GR MIRES	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP LED DIMENSIO FINISH SP LO3 0.010 Lary isformatio as that the is be reprodued they isformatio RANCES ON: 0.03 0.010 Lary isformatio RANCES CON: 0.010 Lary isformatio BE STATE RECURE	X ⁴ ± X/X± DA 29-Ju of VERTEQ formotion (A formotion (A formotion (A) to any pre-du EQ inc.	.0 - TE un-00 un-00 10, q 0 He ¢1, +11	ES Id is s or copt
EIECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREGUE 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. IZOV -1 CONFIG MATERIA UNLES DRAWN: ENGR: This Doc hander th S. Confine MATERIA UNLES	L REJUREMENTS ICAL DIAGRAM:10633 Y VQLTAGE:120 Y Y VQLTAGE:120 Y EUCY100 A GR MIRES	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP DIMENSIO RANCES ON: D.03 0.010 incerperation as that the is be reproduced enent with VERT	X ⁴ ± X/X± DA 29-Ju of VERTEQ formotion (A formotion (A formotion (A) to any pre-du EQ inc.	.0 - TE un-00 un-00 10, q 0 He ¢1, +11	ES ad is b or copt N
ELECTRICAL I. ELECR 2. SUPPL 3. PHASE 4. FREGUE 5. FULL 6. NUMBE 7. LARGE B. MAIN I. J. IZOV -1 CONFIG MATERIA UNLES DRAWN: ENGR: This Doc hander th S. Confine MATERIA UNLES	L REQUIREMENTS ICAL DI AGRAM: 10693 YOLTAGE:	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP LED DIMENSIO FINISH SP LO3 0.010 Lary isformatio as that the is be reprodued they isformatio RANCES ON: 0.03 0.010 Lary isformatio RANCES CON: 0.010 Lary isformatio BE STATE RECURE	X*± X*± DA 29-Ju 29-Ju 29-Ju 101 VENTEQ	.0 - TE un-00 un-00 10, q 0 He ¢1, +11	ES ad is b or copt N
ELECTRICAL ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGUL 5. FULL 5. FULL 1. S. F	L RECURRENTS ICAL DIAGRANT 10693 YOLTAGE:	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP LE D DIMENSIO RANCES ON: 0.010 tary isformatio as that the is be reproduced enert with VERT NEXT ASS REQUIRE DO.555M LE TOP	X ^a ± X/X ± DA 29 - Ju 29 - Ju 29 - Ju 29 - Ju 29 - Ju 29 - Ju 29 - Ju 20 - Ju	.0 - TE un-00 un-00 10, q 0 He ¢1, +11	ES ad is b or copt N
ELECTRICAL ELECTRICAL 1. ELECR 2. SUPPL 3. PHASE 4. FREGUL 5. FULL 5. FULL 1. S. F	L REQUIREMENTS ICAL DI AGRAM: 10693 YOLTAGE:	HZ PS PS UPT CAPACITY. AMPS Z. DESCRIPTION FINISH SP FINISH SP D.03 0,010 ACCES ON: D.03 0,010 ACCES ON: ACCES ON: D.03 0,010 ACCES ON: D.03 0,010 ACCES ON: ACCES ON: D.03 0,010 ACCES ON: ACCES ON: D.03 0,010 ACCES ON: ACCES ON: ACCES ON: ACCES ON: D.03 ACCES ON: ACCES ON: ACCE	X ^a ± X/X ± DA 29 - Ju 29 - Ju 29 - Ju 29 - Ju 29 - Ju 29 - Ju 29 - Ju 20 - Ju	1.0 - TE un-00 un-00 11c, q 11c, q 11	ES ad is b or copt N



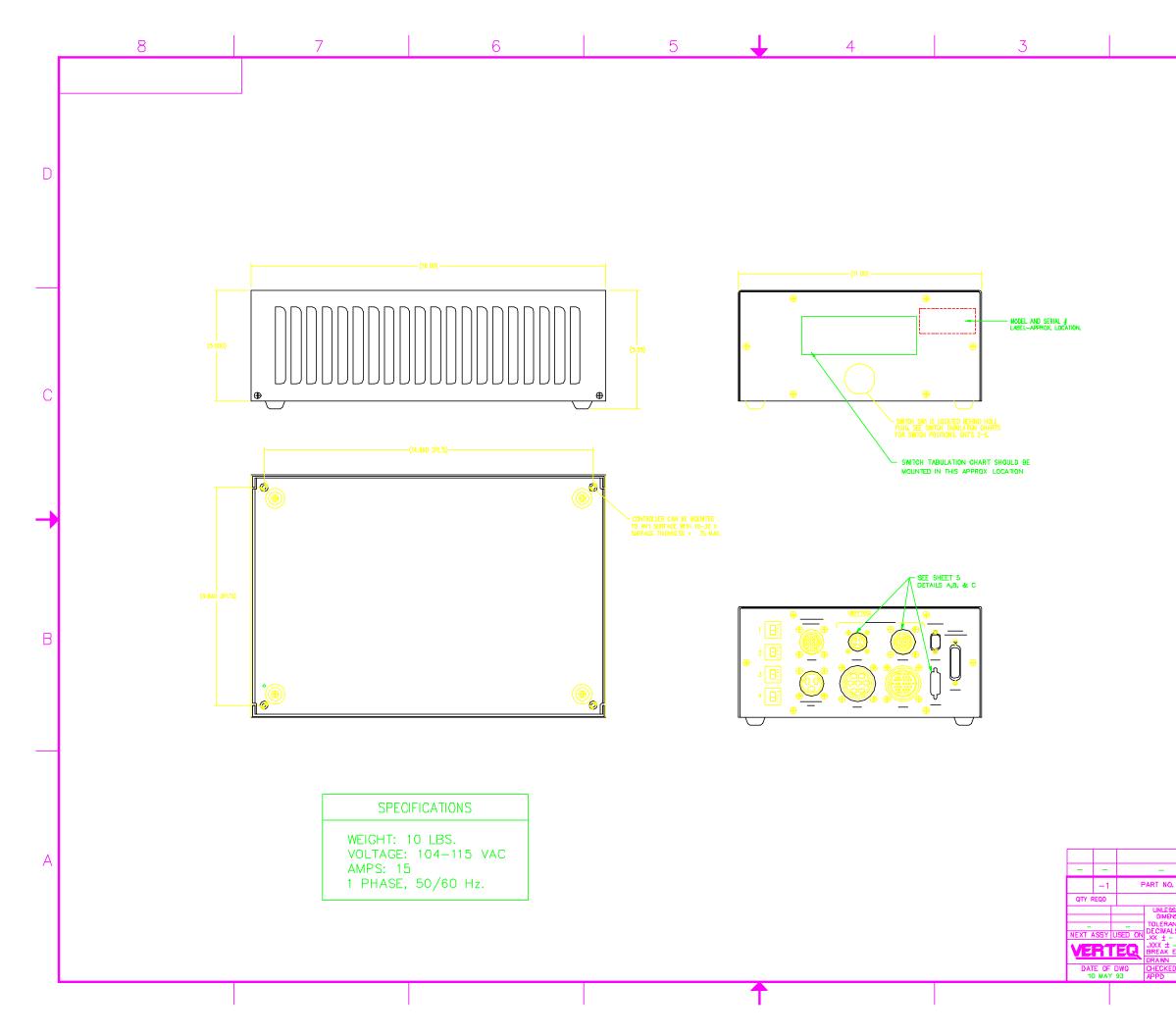

DWG NÖ						
	: 1074	4044		SH: 1	REV: C]
	REV	ISIONS				1
REV	DESCRIPTION			DATE	APPD	1
NC	INITIAL RELE	ASE	5/2	21/92	GS	
Α	SEE EO		10-	-5-00	BB	
В	SEE EO		6/1	19/02	DEC	
Ô	SEE EO		3.2	24.03	RPB	Ы
	N	OTES				
						_
						C
						+
-1	-					
						B
CONFIG			SPEC			в
		SCRIPTION	SPEC			в
CONFIG			SPEC			В
CONFIG			SPEC			В
Config Materia — — — —		FINISH 3 — — — — —		RE IN IN	CHES	В
Config Materia — — — —	L SPEC SS OTHERWISE SPECIF TOLER	FINISH 3 — — — — —	ions af		CHES	В
Config Materia — — — —	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ±	FINISH 3 — — — — — IED DIMENS	IONS AF	_	CHES	B
Config Materia — — — —	L SPEC SS OTHERWISE SPECIF TOLER	FINISH 3 — — — — — IED DIMENS	ions af	_	CHES	В
Config Materia - - - Unle	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ±	FINISH 3 — — — — — IED DIMENS	IONS AF X° ± X/X	_ ± _		В
CONFIG MATERIA UNLE DRAWN:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES	FINISH 3 — — — — — IED DIMENS	IONS AF X° ± X/X	– ± – DATE		B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF X* ± X/X 5	– ± – DATE 5/21/9	2	
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 3 IED DIMENS ANCES ON: 	IONS AF	– ± – DATE 5/21/9	2 . and is e hole or except - - - - -	B
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX	FINISH 1	IONS AF		2 . and is e hole or except - - - - -	
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF	FINISH 1	IONS AF		2 . and is e hole or except - - - - -	
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF sument contains Propriet subject to the condition in confidence (B) Not the sument contains Propriet sument contains Propriet sument contains Propriet sument contains Propriet sument contains Propriet sument contains Propriet STERE STERE STERE STERE Electrical	FINISH : - - - - - - - - - - - - -	IONS AF	ERTEQ Inc ion (A) B product, c. user user atic	2 . and is e hole or except - - - - -	
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX	FINISH : - - - - - - - - - - - - -	IONS AF	t	2 . and is e hole or except - - - - -	
CONFIG MATERIA UNLE DRAWN: ENGR:	L SPEC SS OTHERWISE SPECIF TOLER .XX DECIMALS ± .XXX DECIMALS ± SIGNATURES G SHERIFF sument contains Propriet subject to the condition in confidence (B) Not the sument contains Propriet sument contains Propriet sument contains Propriet sument contains Propriet sument contains Propriet sument contains Propriet STERE STERE STERE STERE Electrical	FINISH : - - - - - - - - - - - - -	IONS AF	t	2 . and is e hole or except - - - - -	

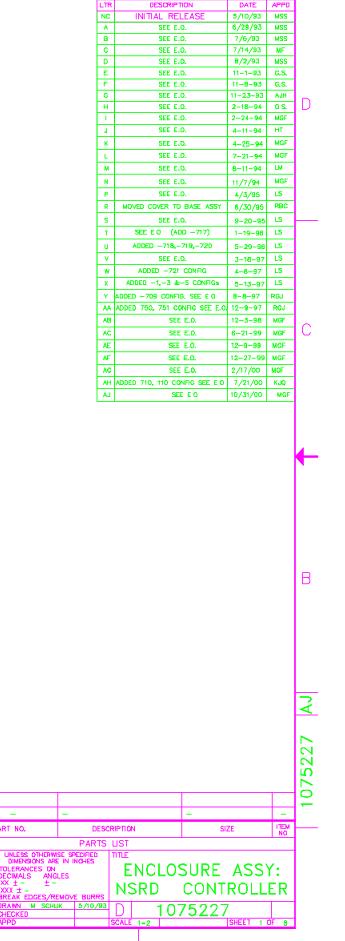
APPROVED FOR CONSTRUCTION - 4/1/03

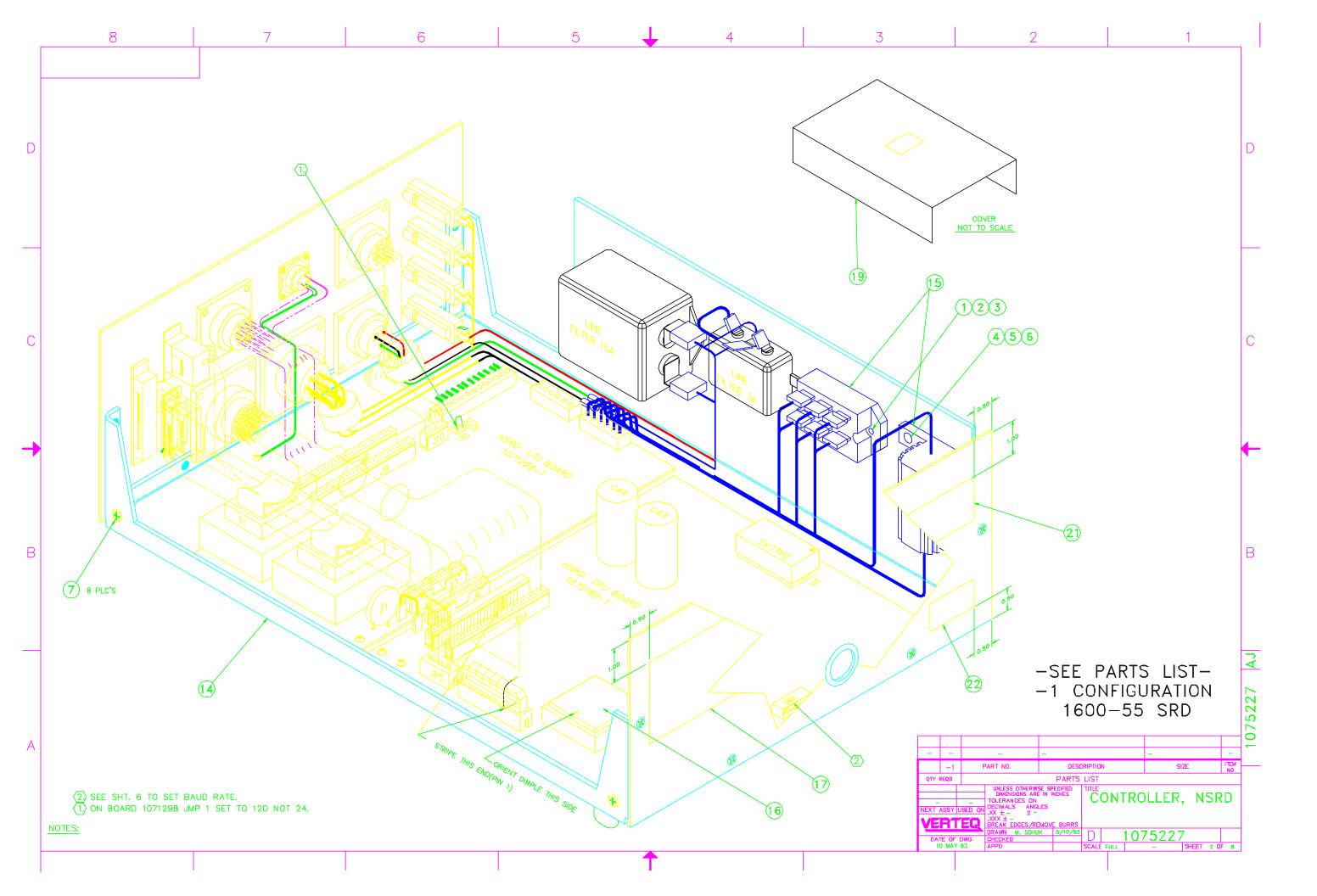


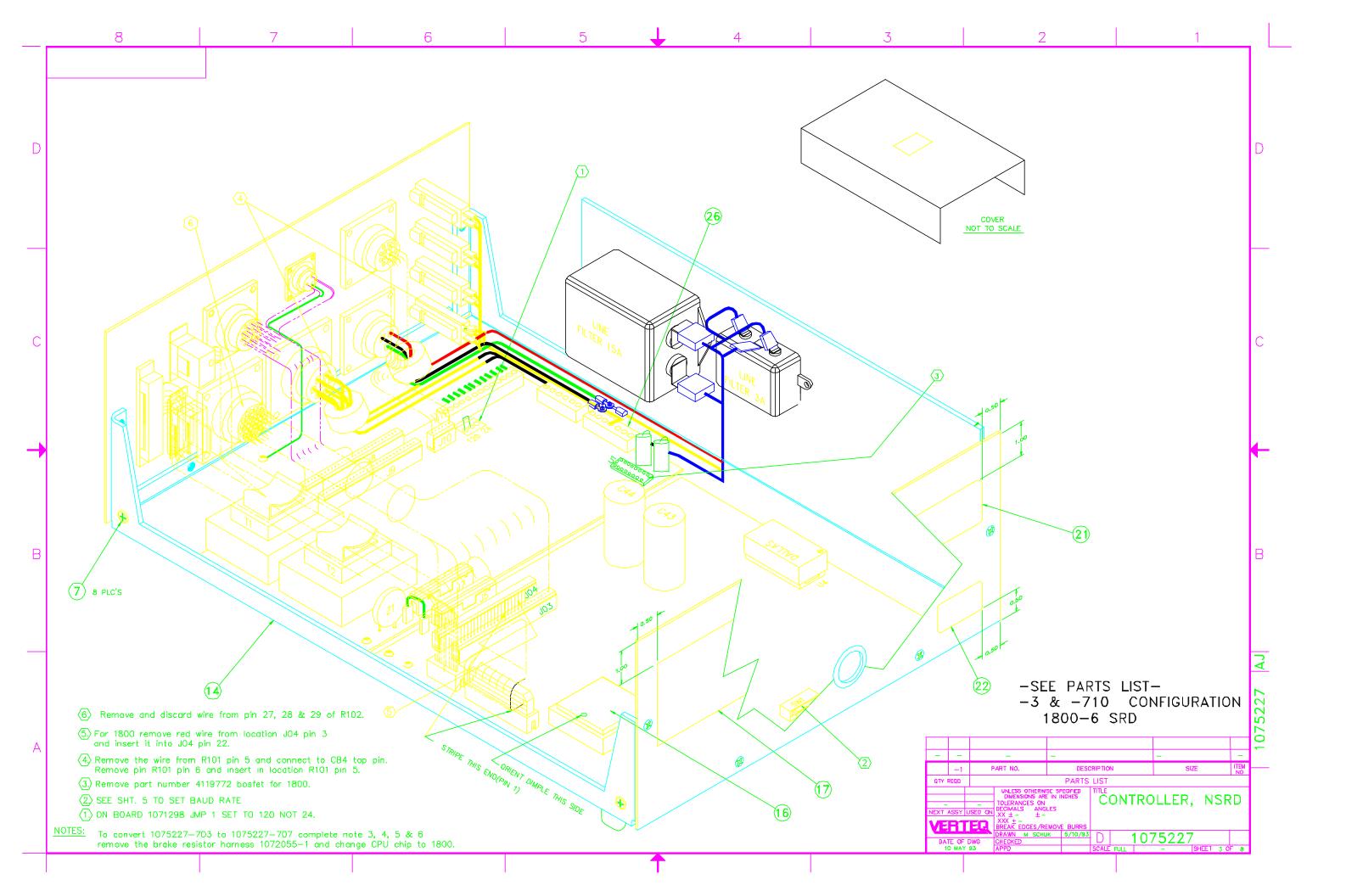


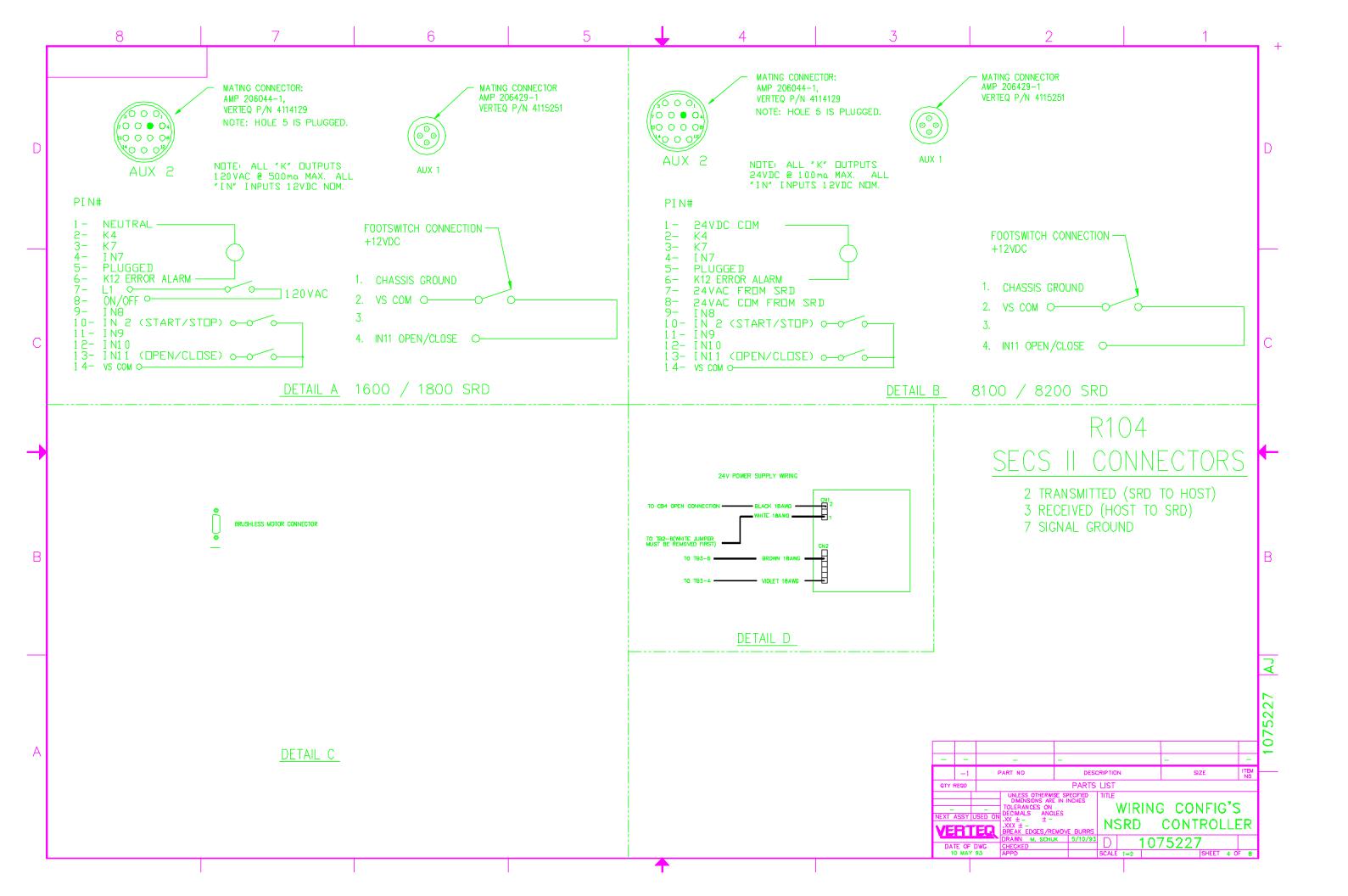
BRN GRAY GRN WHT GRN WHT BLU BLK WHT/BLU BLK WHT/KLU BLK WHT/YCD WHT/YCD	K7 K6 K5 IN7 IN8 K14 K3 SSR PWR L1 ON-OFF	• 1 • 2 • 4 • 5 • 7 • 7 • 9 10
GRN WHT GRN BLU BLK WHT/BLU BLK WHT/VIO WHT/YEL	K5 K4 IN7 IN8 K14 K3 SSR PWR L1 ON-OFF	• 3 • 4 • 5 • 6 • 7 • 8 • 9
WHT GRN BLU BLK WHT/BLU BLK WHT/BLU WHT/YEL	K4 IN7 IN8 K14 K3 SSR PWR L1 ON-OFF	• 4 • 5 • 6 • 7 • 8 • 9
GRN VIO BLU BLK WHT/BLU BLK WHT/VIO WHT/YEL	IN7 IN8 K14 K3 SSR PWR L1 ON-OFF	• 5 • 6 • 7 • 8 • 9
VO BLU BLK WHT/BLU BLK WHT/VIO WHT/YEL	IN8 K14 K3 SSR PWR L1 ON-OFF	• 6 • 7 • 8 • 9
BLU BLK WHT/BLU BLK WHT/VIO WHT/YEL	K14 K3 SSR PWR L1 ON-OFF	• 7 • 8 • 9
BLK WHT/BLU BLK WHT/YIO WHT/YEL	K3 SSR PWR L1 ON-OFF	• 8
WHT/BLU BLK WHT/VIO WHT/YEL	SSR PWR L1 ON-OFF	• 9
BLK WHT/VIO WHT/YEL	L1 ON-OFF	
WHT/YEL	ON-OFF	10
WHT/YEL		
		• 11
	IN9 IN10	• 12
WHT/GRN	SSR RET	• 13
WHT/GRN	K2	 • 14
RED		• 15
WHT/YEL	K13	• 16
WHT/GRN	<u>K1</u>	+ 17
WHT/BLK	IN11	• 18
WHT/ORG	IN5	• 19
WHT/RED	IN6	la 20
NO	VS COM	• 21
WHT/BLU	IN4	• 22
WHT/VIO	IN3	• 23
WHT/BLK	K12	• 24
WHT/ORG	K11	• 25
WHT/RED	K10	2 6
WHT	SPEED +V	27
BLU	5VDC COM	28
BRN	SPEED	- 29
RED	INDEX +V	- 30
BLU	5VDC COM	3 1
GRAY	INDEX	• 32
NO	VS COM	3 3
BRN	IN2	3 4
GRAY	IN1	35
BLK	+VS	36
RED	INÔ	37

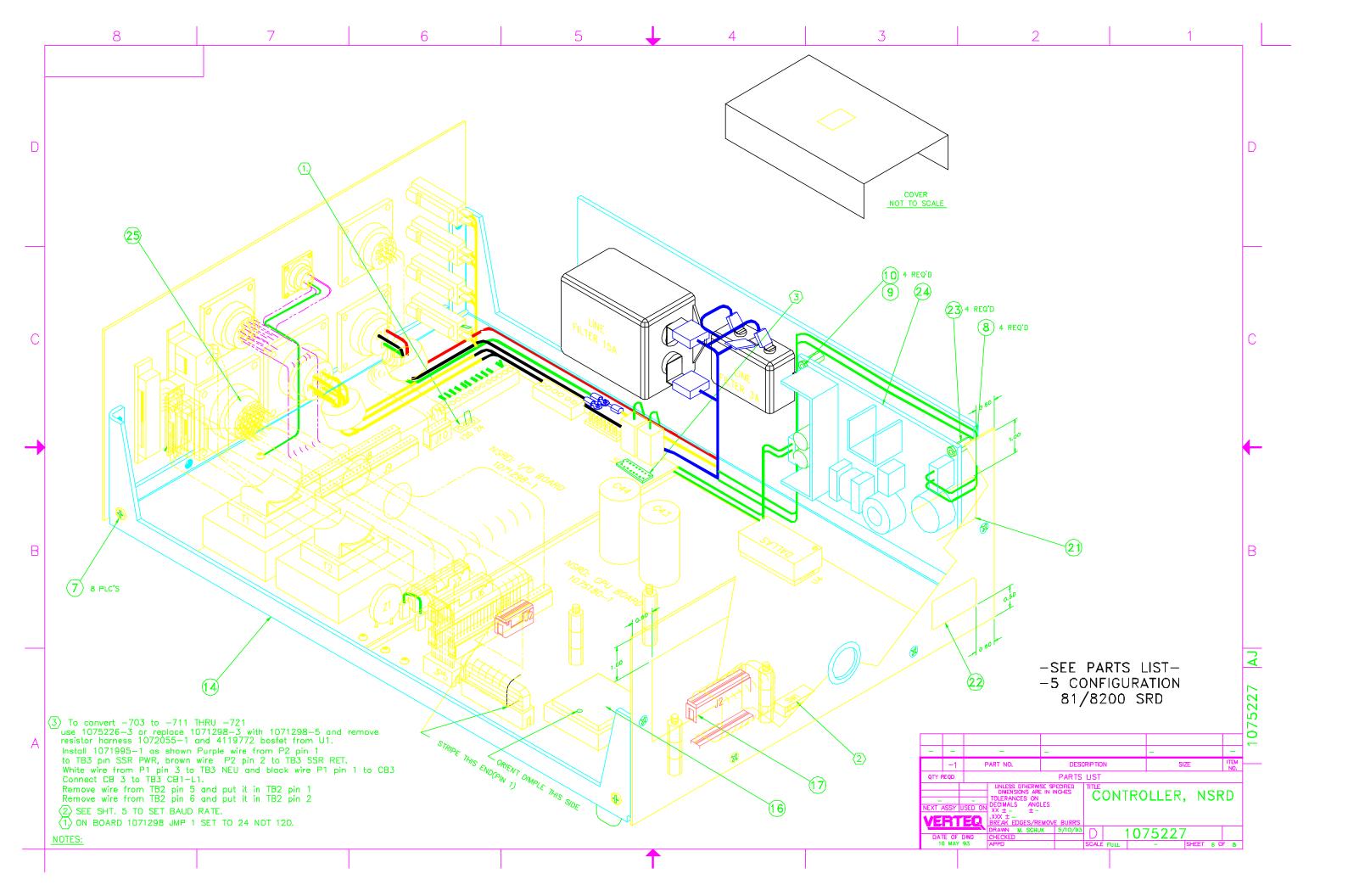

APPROVED FOR CONSTRUCTION - 4/1/03

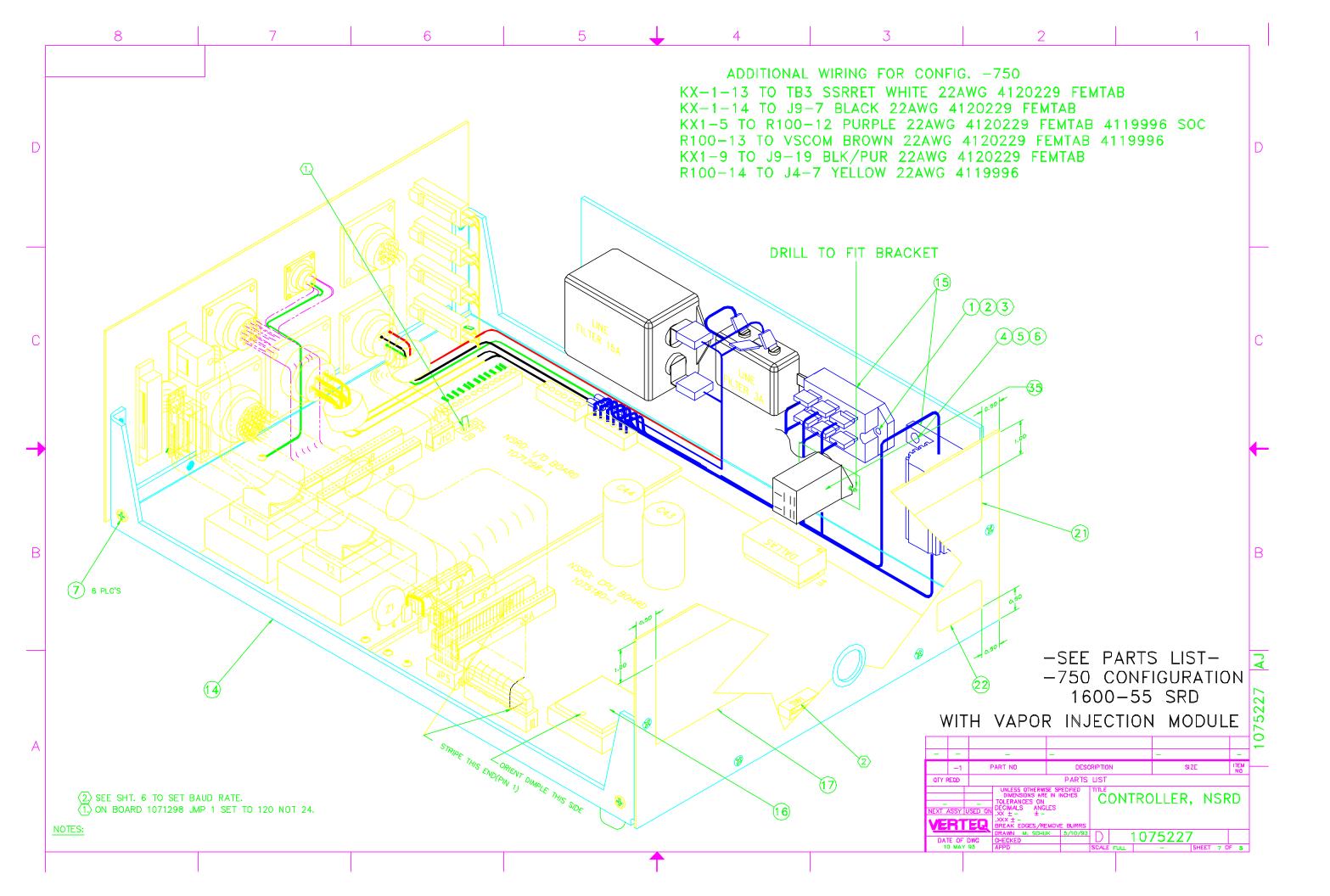

♠

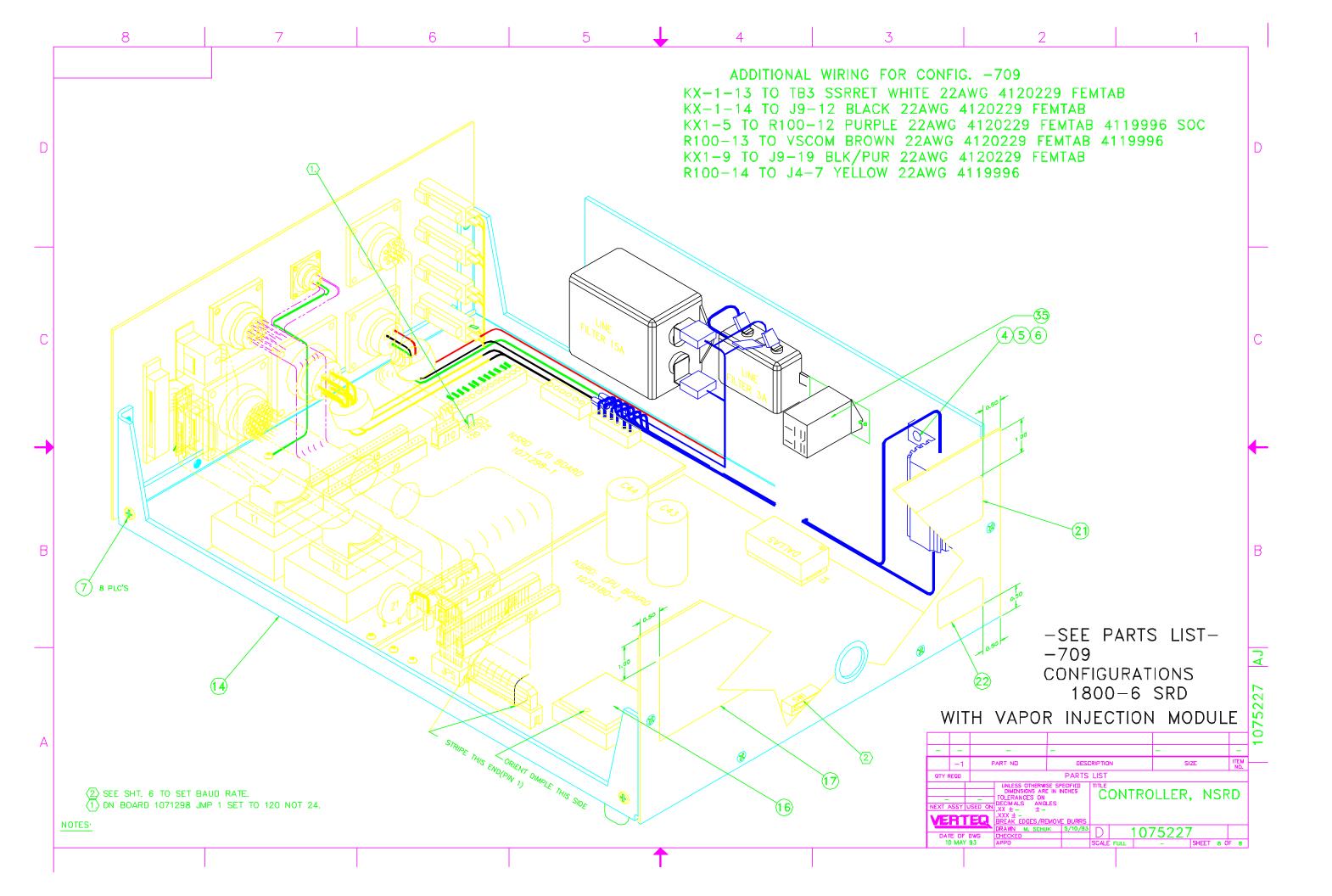


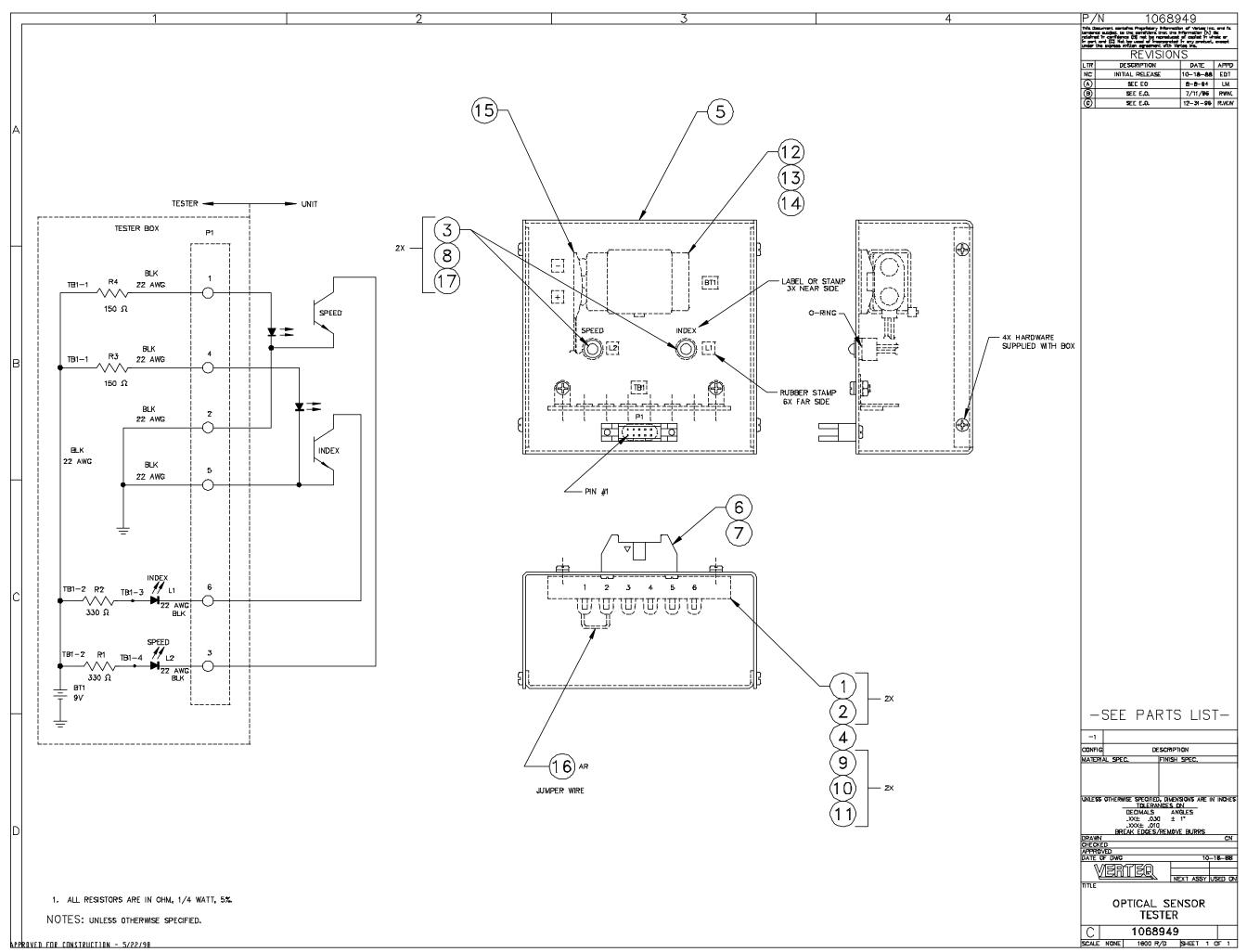

APPROVED FOR CONSTRUCTION - 4/1/03



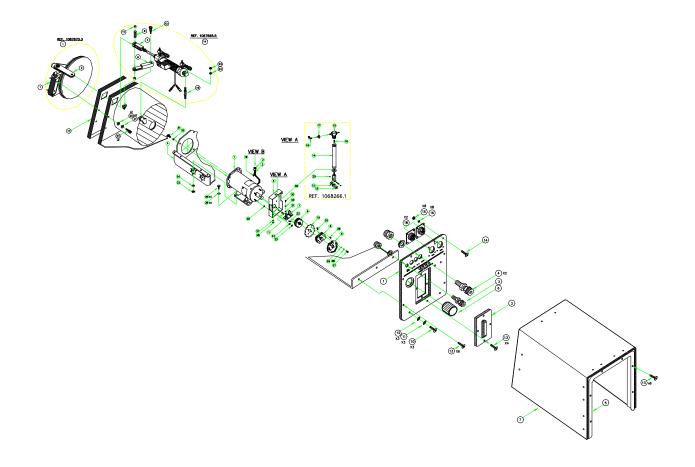

REVI

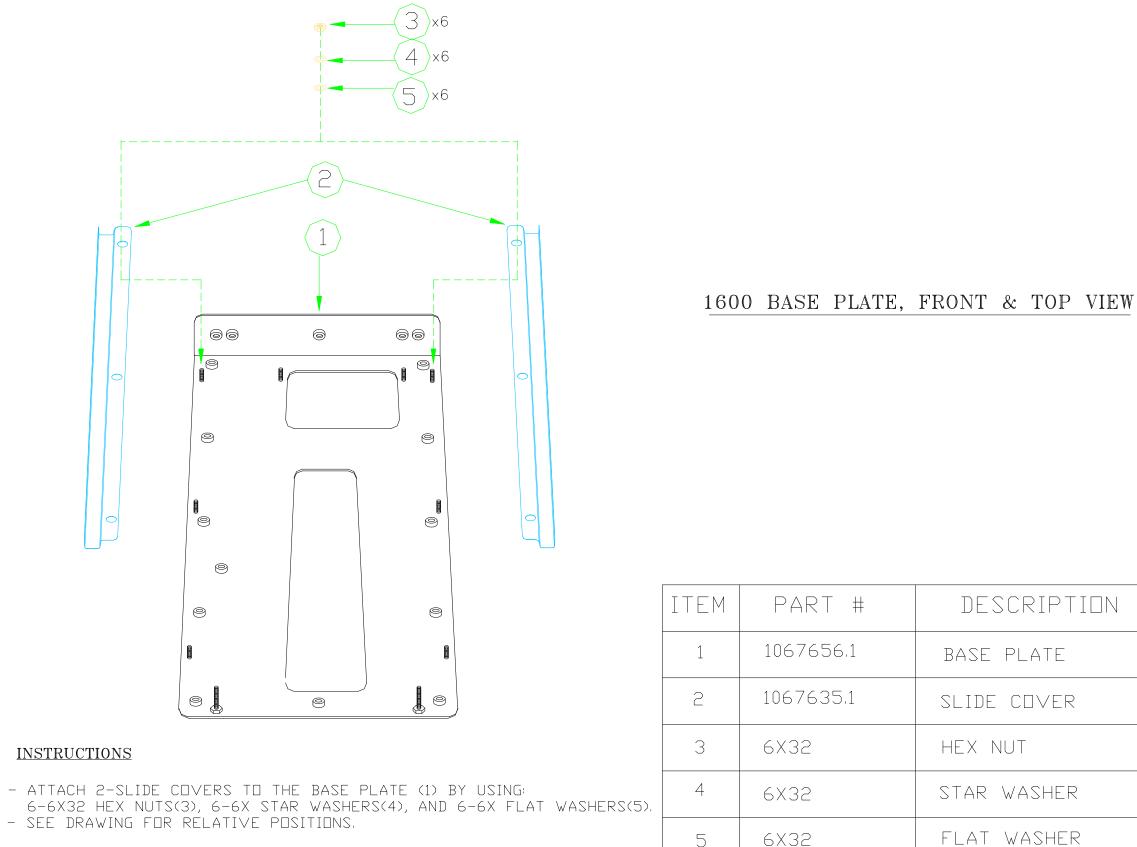






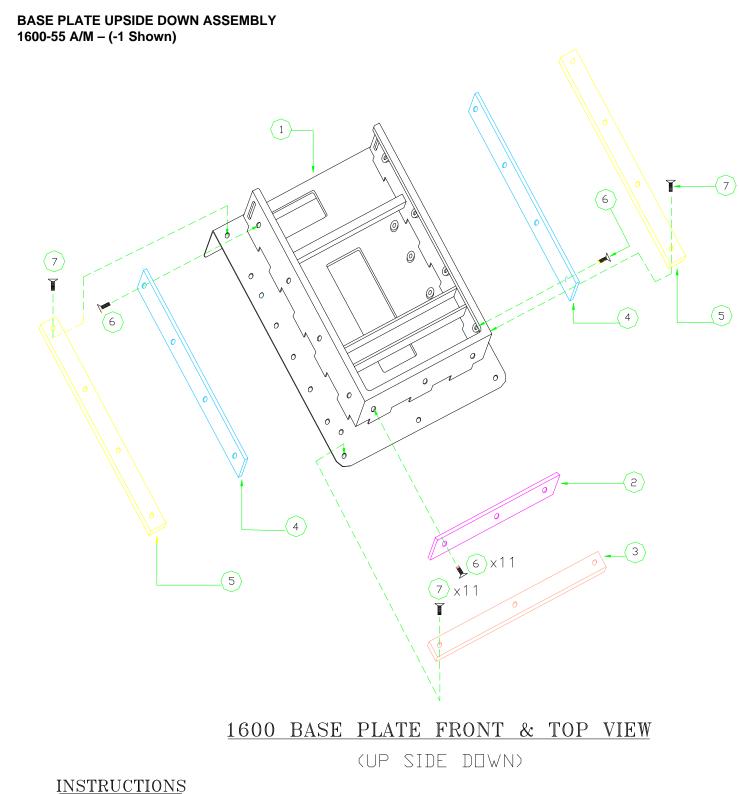
	8		7				6				5			4	-				3				2				1	1	
		1600:			SWITCH TABULA						BULATION CHAR																		٦
	NOTE: USE WITH 1600−004-пп 1600-005-D3 AND	POSITIO	ON SWIT		AUTO EO		CC* DI**	_			N, SECS II INST S DOWN, THEN:				input f	relay led's,	, DISPLAYED	ON CPU	BOARD OF CO	INTROLLER.									
	CODES BASED THERE ON.	DOWN	60	Hz	MANUAL		NO CC* NO DP*	SEC			WITCH 8 BAUD			D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6		
DIP SI	WITCH SELECTIONS						CC CLEAN COIL SENSOF DI DI FLOW SENSOR IN		ED. DO'	WN [UP 480 DOWN 240	00	1600			HEATER	R	FQOT SWITC N/O	CH CLOPER	DOOR OPENED	BLADDER OK	NZ PRESSURI OK	E START	STOP N/C		SPEED	INDEX		
		1600;			SWITCH TABULA	TION CHA	RT					00			DI	DI FLOW	N2 FLOW											-	
	NOTE: USE WITH 1600-005-05 AND CODES BASED THERE UN	POSITIO	50	Hz	VITCH 2 SWITC AUTO EO	CH 3 5	WITCH 4 SWITCH 5 CC+ BLOW TILL DOOR CLOSE	BOAT NOT	CH 6 SWI TANING T PRESENT 4800	TCH 7 5	WITCH 8 o to Recept O ter table 10 min		1800 *	DI PRESSUF	E LOW	HI	н	OPEN CLOSI		DOOR OPEN	DOOR SEALED	N2 PRESSURI	START/ E STOP	WINDOW UNSEAEL	OBSTRUC	r speed	INDEX	-	
		DOWN	60	Hz	MANUAL		NO CC* BLOW-DFF CC- CLEAN COIL SENSOF		ARNING 9600 ED.	BAUD	NO GO		8100	NEUTRAL		LOCK	UNLOCK	OPEN CLOSI	e door E closed	D00R OPENED	WINDOW SEALED	N2 PRESSURE	START/ STOP	DOOR UNSEALE	OBSTRUC	T- SPEED	INDEX		
		1800: POSITI			SWITCH 7ABU		HART SMTCH 4 SMTC	H 5 SV	WITCH 6		DOWN SECS I		1 M F		4 IS IN 1	THE UP POST	TION(SPECIAL) א טסא (ILL SEE THE D	I AND N2 FL	OW SENSOR	5.							
		UP	(A) B	NO N2 BLC	OW TILL	SPECIAL * ENABLE DETECTO	HEAT DR N	ND SECS II	IF SW	6 IS DOWN, 1	THEN:	 	PROGRAMING															-
					<u>ĹŎŴ<u></u>ŐFF<u>B</u>ĽČ W/OBST.SEN</u>		NO SPECIAL OR OFF		SECS II	SWITCH 7	7 SWITCH 8 DOWN	BAUD 15: 9600							_		KEYPAD DI								┢
		~" '	B-DRO		DÓOR OR HIN		OR			DOWN UP	UP DOWN	4800 2400		YSTEM SELEC	стар	ESCRIPTION TS PROGRAMIN		icipe ste Put inpu	<u></u>	TIME			RPM		RES	STIVITY			
					ECIAL (UP) PO SENSORS ARE		WHEN OPTIONAL	DI WATE	ER	UP	UP	1200		1600	MODE		0-	9 0-9	, MAX	INPUT OF 99	99 SECS	MAX INP	UT OF 3200	RPM ² S		PUT 20.D	_		
		8100/82			SWITCH TABU					BAUD	TABULATION	CHART		1601		PARAMETERS F WASH WARNING		t not ED USEI		INPUT OF 99	99 SECS	MAX INP	UT OF 9999	CYCLES		SED BLAI	к		
		POSIT	ION SWIT	TCH 1 5	SWITCH 2 SW		SWITCH 4 SWITCH HEATER ON		WITCH 6 NO SECS II		DOWN, SECS II 6 IS DOWN, 1			1602	OFS	ays revision Oftware		6 TYPE		0	x	-	- <u>x</u>	X REVISION	BLANK BL	ANK BLA	к		
<u> </u>		DOW	N Bi	100	YES N2 BLOW-OFF BÌ	30 SEC LOW-OFF	HEATER OFF		SECS II	SWITCH 7	7 SWITCH 8 DOWN	BAUD IS: 9600		1603	DISPL SIGNA	AYS INPUT @			ot not h Tch used h	IEATER	BLADDER	N2 S PRESS 1	TART STO N/O N/	ip NOT C USED		OT BLAI	к		
<u>REL</u>	AY LED'S DISPLAY ON CONTROLLER I/O BOARD									DOWN	UP	4800	li l	1604		PARAMETER FO WASH (E)		T NOT ED USEI		INPUT OF 99	99 SECS		NOT USED		NOT NU USED U	OT BLAI	к		
1600 CR1	077									UP UP	DOWN UP	2400 1200		123		Step of Run *				DISPLAYS	THE LAST S	iep of the	LAST RUN						
Θ				P MESSAG																									
	IND AIL VAT LADD	Г	DISPLAY		1600		1800		8100		7		2	YSTEM SELEC	T DE	ESCRIPTION		ape ste		TIME			RPM		RES	STIVITY			
			0001	POW					0100		-			1800	STAR MODE	ts programin		NUT INPL 9 0-9		INPUT OF 99	99 SECS	MAX INP	UT OF 2000	RPM'S	MAX INF	PUT 20.0			
		-	0002		TER FAILURE * Ø						-			1801	SET P AUTON	PARAMETERS F WASH		t not Ed usei		INPUT OF 99	99 HOURS	MAX INP	UT OF 9999	CYCLES	not ni Used u	DT BLA	к		
R RUN	IEATER		0004	DI F	LOW * (2)		HEATER FAILURE * ②	_			-			1800 1802		ays revision Oftware	+-	B TYPE		0 D VERS	X	-	- <u>x</u>		BLANK BL		к		
W	CLIDSE CLIDSE		0008	_			_	RE1	TAINER (3)		-			1803	DISPL SIGNA	AYS INPUT			en/ Di Dse press	DOOR DOO				OW AL CTION	DI FLOW DI		к		
			0010	INDE	X FAILURE		NDEX FAILURE ①	IND	EX FAILURE	0	1			123	LAST	STEP OF RUN +				DISPLAYS	THE LAST S	TEP OF THE							
1800 <u>CR1</u>			0020	RPN	тоо нісн 📀		RPM TOO HIGH 🖉	RPN	M TOO HIGH	2							MF	DIP SWITC	CH 4 IS IN TH	e up postic	IN(SPECIAL)	YOU WILL S	EE THE DI	AND N2 FL	OW SENSORS	5.			
1 H	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0040	_		D	OOR NOT CLOSED @ ST	(2) IART –			1		s	YSTEM SELEC	л DE	ESCRIPTION	RE	CIPE STE	Р	TIME			RPM		RES	STIVITY			
ENT DD	AC DOOR INDEX DI VATER		0080				_	-						8100	STAR	ts programin		PUT INPU 9 0-9		INPUT OF 99	99 SECS	MAX INPUT (JF 120D RP	M'S, FOR 810 M'S, FOR 820	MAX INF	PUT 20.0			
H H			0100	N2	PRES. FAIL Ø		nz pres. Fail 🛛	NZ	PRES. FAIL	0				8101	SET P	ARAMETERS F	OR NO	т пот		INPUT OF 99	99 SECS		UT OF 9999		NOT N	OT BLA	к		
			0200	-			N2 FLOW *②	-						8102	AUTON DISPL	WASH AYS REVISION		ED USEI	u 	a p	v	_	- x	v	USED U		_		
× Ž	EATER ALARM IGEN J		0400	-		1	POWER FAILURE ①	PO	WER FAILURE	E (1)				3100		oftware	RET	TYPE AINER OPE	N/ NOT	VERS	R DOOR	N2 S	TART/ DOD	REVISION ₹ OBSTRU	RETAINER N	NT	-		
			0080	-			-	-						8103	SIGNA	NLS * (A	0P	EN CLO	DSE USED	OPEN CLO	SED SEALED	PRESS S	TOP	EAL CTION	CLOSED U	SED BLA			
			1000	DOC	r open in run	0	door open in run 🛛		or open in	RUN 🛛				8104		LMODE	_ +- _		SECS	S CAN ONLY (HECK STATU	S OR SET LO	CAL/REMOTI	E MODE					
8100 CR1			2000	BLA	dder press fail	LØ	Door Unseal in Run (2) DXX	OR UNSEAL I	in run 🖉			i L	8105	REMO	TE MODE				SE	CS PERFORMS	ALL FUNCTI	DNS						
(↓ Li Li Li Li Li Li Li Li Li Li	MIEX OF ALLER OF ALLE		4000	DOC	r open error	۵ (OOR OPEN/CLOSE ERR	(3) ROR DOC	OR OPEN/CLO	(3) DSE ERROR			*	ESELECT BY	PRESSING (CANCEL.				ALL "NOT US	ed" are disp	LAYED [®] 0"							
Ę	EAL DC HEAT RET. LC DI WAT		8000	DOC	R CLOSE ERROR	3	OBSTRUCTION 3	OBS	Struction (3				Xample- IF (An Error	ON A 1600, MESSAGE	YOU ENTERED	0100 0000 0	x 0											
800			4444	-			-		ILURE OF RET)EX ON POWE					SHOWS, TH	AT THE DO		0= INPUT OF	F; 1= INPL	JT ACTIVATED.	-	-1	- PART NO.		- DES	RIPTION		- SIZE		-
	$\oplus \oplus \oplus \oplus \oplus \oplus \oplus \bigoplus^{CR 4}$		8888	LOS	s of speed fee % While Runnin	D- IG ⊕ E	LOSS OF SPEED FEED- BACK WHILE RUNNING (E LOS	SS OF SPEED CK WHILE RU) FEED- JNNING (D)			FI	EATURE EPR	om is ins		Cial Featu	RE		QTY F				PARTS					
₹ N	N/A 2008 2008 2008 2008 2008 2008 2008	*	OPTIONAL	SENSOR R	EQUIRED: WARNIN	NG MESS/	AGE ONLY- DOES NOT	stop ru	JN.				© /	ILWAYS (2N I	for hinge	ED DOOR.					-		SIGNS ARE INCES ON SIGNS ARE INCES ON S ANGLE	SPECIFIED N INCHES	WI	RING	CONF	FIG'S	
	CLDSE DPEN NITI \$TATIC		(2 PRESS	"START" TO CLEA	EAR															RTEG	XX ± - XXX ± - BREAK E	± - DGES/REM	ove Burrs	NSR			ROLLER	2
			(PRESS TURN F 	"OPEN/CLOSE" T OWER OFF & ON	O CLEAR	AR													DAT	E OF DWG MAY 93		M. SCHUK	5/10/93	D SCALE 1=2		5227	HEET 5 OF 8	



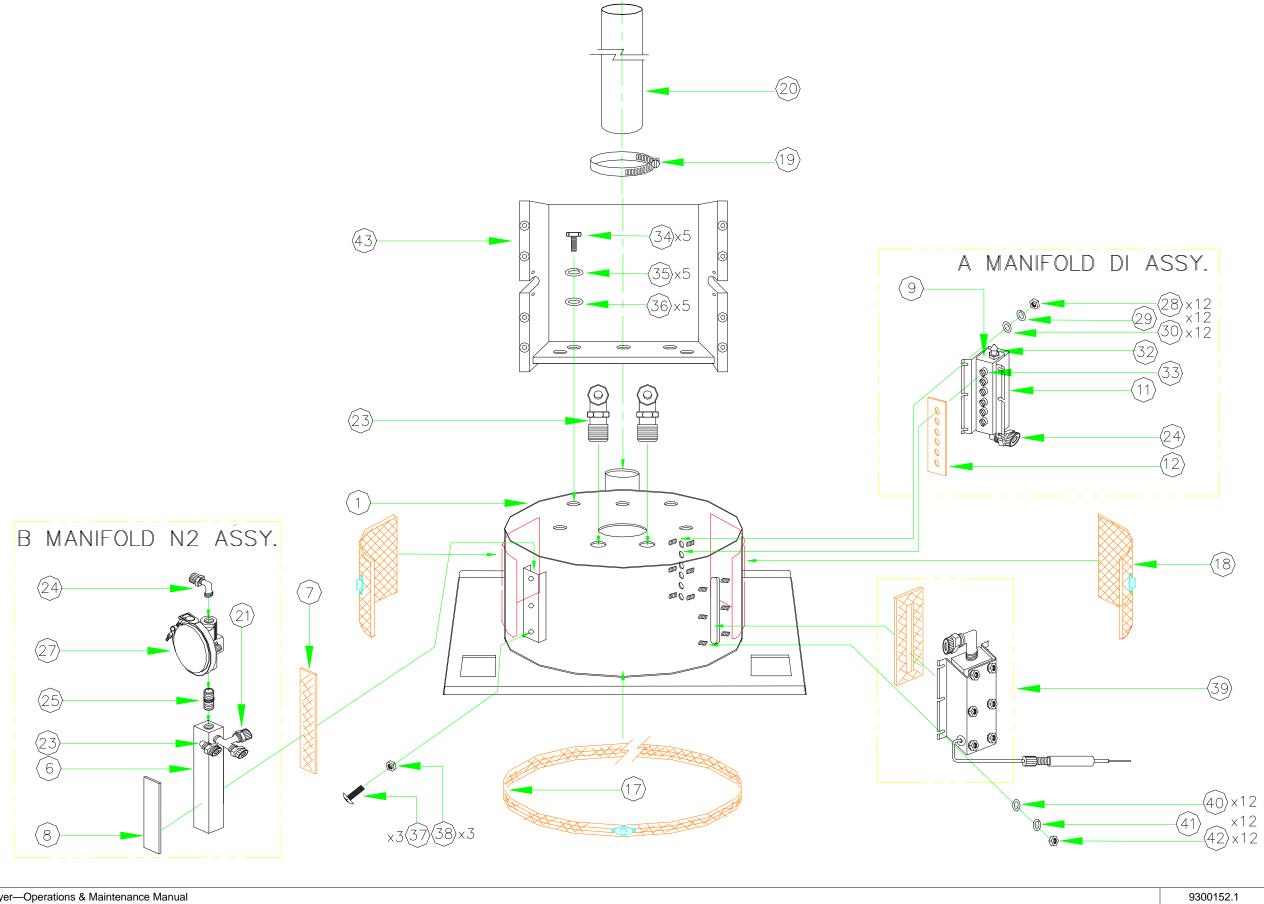


ITEM	Page
Base Plate	1 through 2
Bowl Assembly	3 through 7
Door Cylinder	9 through 10
Door Pivot	11 through 12
Drains	13 through 19
Hinge Assemblies	21 through 27
Motor Assembly	29 through 32
Seal Plate	
Switches	35 through 37
Top Assemblies	39 through 45
Top Covers	47 through 53
Transformer	55
Valves	57 through 74

THIS PAGE INTENTIONALLY LEFT BLANK.


SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

9300152.1


DESCRIPTION	QTY
BASE PLATE	1
SLIDE COVER	2
HEX NUT	6
STAR WASHER	6
FLAT WASHER	6

BASE PLATE FRONT and TOP VIEW 1600-55 A/M – (-1 Shown)

IPB 1

ITEM	PART #	DESCRIPTION	QTY
1	1067656,1	BASE PLATE	1
2	1067623.1	SUPPORT FRONT	1
3	1067619,1	SUPPORT BASE	1
4	1067622.1	GUIDE BASE SIDE	2
5	1067624,1	SUPPORT SIDE	2
6	10X32X1/2	FLAT SCREWS	11
7	10X32X3/8	FLAT SCREWS	11

BOWL ASSEMBLY 1 1600-55 A/M – (-1 Shown)

BOWL ASSEMBLY INSTRUCTIONS 2 1600-55 A/M

ITEM	PART #	DESCRIPTION	QTY
1	1067657	1600-BOWL	1
6	1065682.1	MANIFOLD, N2	1
7	1065681.1	GASKET, N2	1
8	1062532	PLATE, LOCKING	1
9	1062537.1	MANIFOLD, DI	1
11	1062552.1	BRACKET DI, MANIFOLD	1
12	1062531.1	SEAL, GASKET DI	1
17	1064832.3	HEATER, STRIP 1X36	1
18	1064827.1	HEATER, BLANKET 5X5	2
19	4115761	CLAMP, HOSE	1
21	4118949	TEE, MALE 1/4	1
20	5115521	TUBE, 1X3/4X2"	20 IN
23	4118941	ELBOWL 1/8X1/4T	3
24	4118953	ELBOWL 3/8X1/4NPT	4
25	4116338	NIPPLE, CLOSE	1
27	1067798.1	PRESSURE VALVE	1
28&42	8X32	HEX NUT	12
29X41	8X	STAR WASHER	12
30&40	8X	FLAT WASHER	12
32	4114030	TUBE CONNECTOR	1
33	4117876	NOZZEL	6
34	10X32X3/4	5/16 HEX HEAD SCREW	5
35	10X	STAR WASHER	5
36	10X	FLAT WASHER	5
37	10X32X3/4	ROUND HEAD SCREW	3
38	10X32	HEX NUT	3
39	1069254.1	STATIC ASSY.	1
43	1066893.1	MOTOR, SUPPORT	1

EXTRA PARTS REQUIREMENT FOR BOWL ASSY.							
	4114357	TAPE GLASS					
	4114561	TEFLON TAPE					
	5115241	WATLOW					
	5115242	WATLOW MIXER					

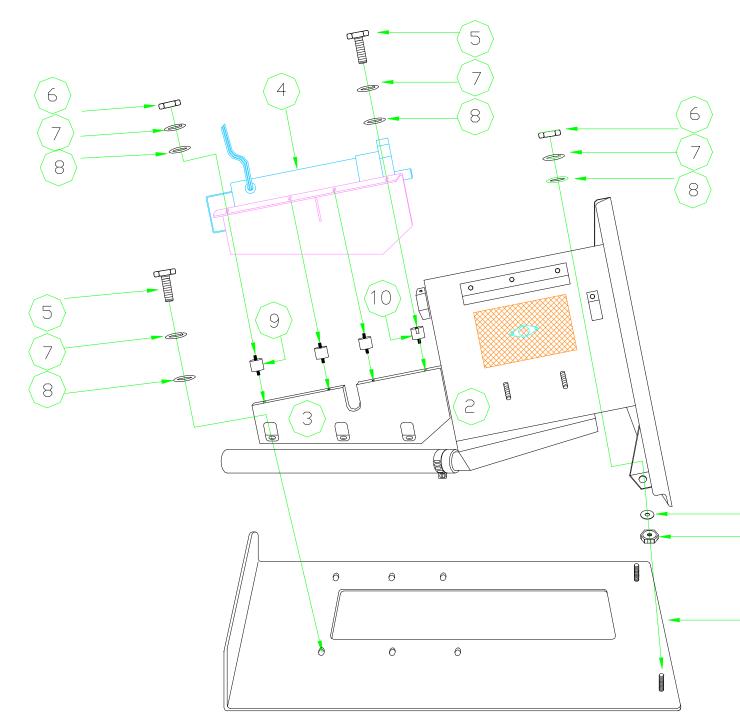
A MANIFOLD, DI ASSEMBLY:

- 1— USING TEFLON TAPE APPLY TO ALL NOZZEL AND ELBOW THREADS.
- 2-ATTACH 6-NOZZELS (33) TO THE MANIFOLD DI (9).
- 3-ATTACH TUBE COONECTOR (32) TO THE MANIFOLD DI (9).
- ATTACH ELBOW (24) TO THE MANIFOLD DI (9). 4-
- 5-INSERT MANIFOLD DI (9) INTO THE MANIFOLD DI BRACKET (11).

B MANIFOLD, N2 ASSEMBLY:

- 1- USING TEFLON TAPE APPLY TO ALL ELBOW AND NIPPLE THREADS.
- 2- ATTACH ELBOW 3/8X1/4 (24), AND NIPPLE (25) TO THE PRESSURE VALVE (27).
- 3- ATTACH PRESSURE VALVE (24).(25).(27) TO THE MANIFOLD N2 (6).
- 4- ATTACH ELBOW 1/8X1/4 (23), AND TEE MALE 1/4 (21) TO THE MANIFOLD N2 (6).

BOWL ASSEMBLY INSTRUCTIONS:


- TURN THE 1600 BOWL(1) FACE DOWN. 1—
- PLACE THE HEATER BLANKET (18) AND HEATER STRIP (17) TO THE BOWL, 2-USING PENCIL TO MARK THE SIZE OF HEATER BLANKETS (18) AND HEATER STRIP ON EACH SIDE OF THE BOWL (SEE DRAWING).
- 3— USING WATLOW & MIXER APPLY ON THE SURFACE OF HEATER BLANKETS (18), HEATER STRIP (17), AND THE SURFACE OF THE BOWL, WHERE YOU JUST MARKED BY PENCIL, THEN WAITING FOR 20 MINUTE.
- 4- ATTACH HEATER BLANKETS (18) AND HEATER STRIP (17) TO THE BOWL.
- 5- USING TAPE GLASS COVER AROUND THE HEATER STRIP (17).
- 6- ATTACH STATIC ASSEMBLY (39) TO THE BOWL, USING 6-8X32 HEX NUTS (42), 6-8X STAR WASHERS (41), AND 6-8X FLAT WASHERS (40).
- ATTACH DI SEAL GASKET (12), AND DI MANIFOLD ASSEMBLY (A), TO THE 7— BOWL (1), USING 6-8X32 HEX NUTS (28), 6-8X STAR WASHERS (29), AND 6-8X FLAT WASHERS (30).
- ATTACH N2 GASKET (7), N2 MANIFOLD ASSEMBLY (B), AND PLATE LOCKING 8– (8) TO THE BOWL (1). USING $3-10\times32\times3/4$ ROUND HEAD SCREWS (37), AND 3-10X32 HEX NUTS (38).
- ATTACH MOTOR SUPPORT (43) TO THE BOWL (1), USING 5-10X32X3/4 HEX 9— NUT SCREWS(34), 5-10X SPLIT WASHERS(35), AND 5-10X FLAT WASHERS(36).
- 10- ATTACH 2-1/8X1/4 ELBOW(23) TO THE BOWL.
- 11- ATTACH TUBE, 1-3/4X2" (20) TO THE BOWL, BY USING CLAMP (19).

(SEE DRAWING FOR RELATIVE POSITIONS).

NOTE

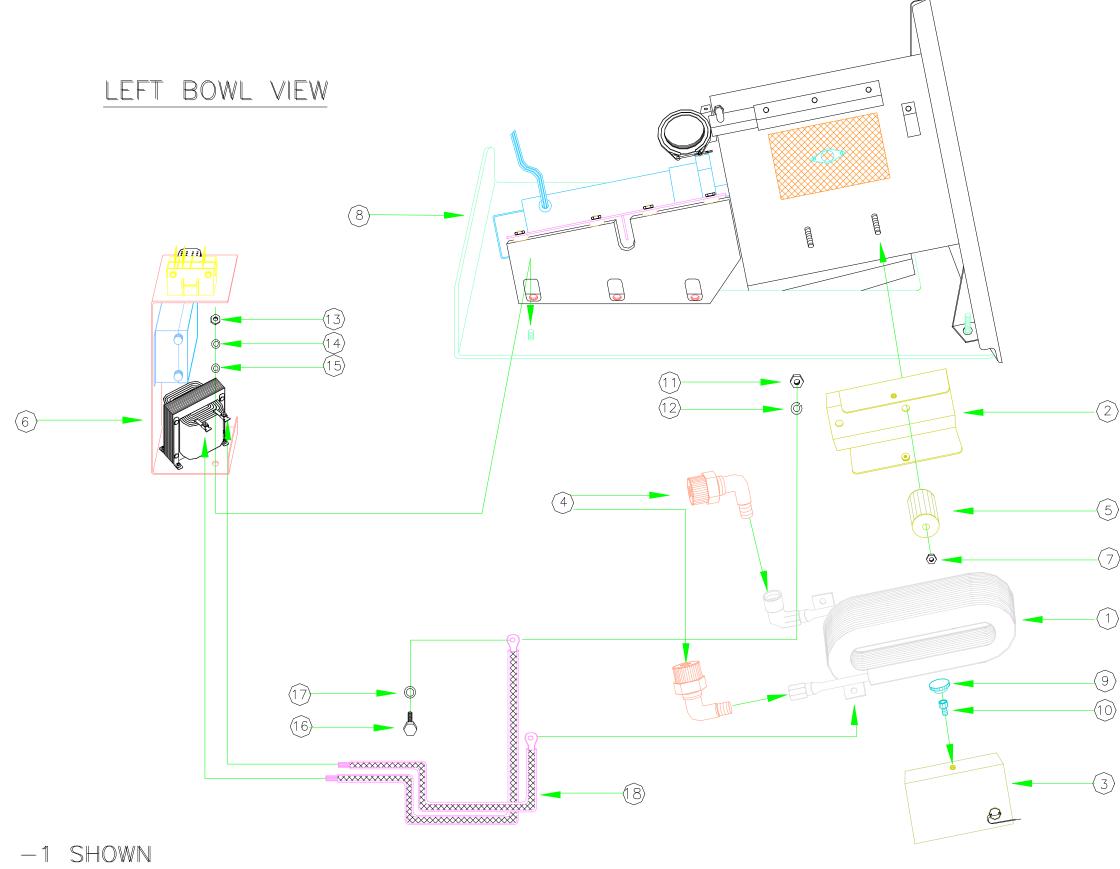
BE SURE APPLY TEFLON TAPE TO ALL ELBOWLS AND NIPPLES THREAD.

9300152.1

INSTRUCTIONS:

- 1- ATTACH 2-1/4X20 HEX NUTS(11), AND 2-1/4X WASHERS (12) TO THE STUDS OF BASE PLATE(1). THEN ADJUST IT AT THE MIDLE OF STUDS.
- ATTACH BOWL ASSEMBLY & MOTOR SUPPORT BASE (2)(3) TO THE BASE PLATE (1). USING 6-1/4X20X3/4 HEX HEAD SCREWS(5), 2-1/4X20 HEX NUTS(6), 8-1/4X20 SPLIT WASHERS(7), AND 8-1/4X FLAT WASHERS(8)
 ATTACH 6-MOUNTING SHOCKS 4-(9) & 2-(10) TO THE MOTOR SUPPORT BASE (3).
- 4- ATTACH MOTOR ASSEMBLY (4) TO THE MOTOR SUPPORT (3). USING 2-1/4X20 HEX SCREWS(5) TO MOUNTING
- SHOCKS(10), 6-1/4X20 HEX NUTS(6), 8-1/4X SPLIT WASHERS(7), AND 8-1/4X FLAT WASHERS(8) TO MOUNTING SHOCKS(9), (SEE DRAWING FOR RELATIVE POSITIONS).

BOWL ASSEMBLY INSTRUCTIONS 3 1600-55 A/M



	ITEM	PART #	DESCRIPTION	QTY
	1	1067656	BASE PLATE	1
	2	1067704.1	BOWL ASSY.	1
	3	1066893.1	MOTOR SUPPORT	1
	4	1070291.3	MOTOR ASSY.	1
	5	1/4X20X3/4	HEX HEAD SCREW	8
3)	6&11	1/4X20	HEX NUT	12
	7	1/4X20	SPLIT WASHER	16
	8&12	1/4X20	FLAT WASHER	20
٧d	; 9	4116635	SHOCK	6
	10	4116634	SHOCK	2

9300152.1

BOWL ASSEMBLY INSTRUCTIONS 4 1600-55 A/M

9300152.1

SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

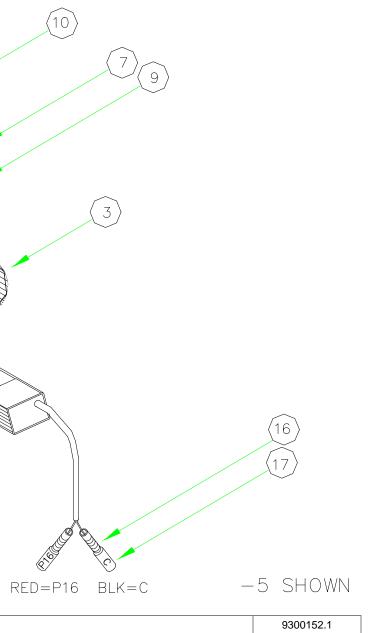
- 1- ATTACH TRANSFORMER ASSY. BLOCK(6) TO THE BOWL ASSY.(8), USING 3-10X32 HEX NUTS(13), 3-10X SPLIT WASHERS(14), AND 3-10X FLAT WASHERS(15). 2- ATTACH CLEANCOIL ENCLOSURE (2) TO THE LEFTBOWL, USING 2-1/4X20 LOCK NUTS (7).
- 3- ATTACH 2-ELBOW 3/8X1/4 (4) TO THE CLEANCOIL (1).
- 4- ATTACH 2-PLATE, LOCATOR (5) TO THE BOWL STUDS, THEN TIGHTEN IT BY 2-1/4X20 LOCK NUTS (7).
- 5- ATTACH 2-CLEANCOIL CABLES (5) TO THE CLEANCOIL (1), USING 2-1/4X20X1/4 HEX SCREWS(16), 2-1/4X20 FLAT WASHERS(17), 2-1/4X20 SPLIT WASHERS(12), AND 2-1/2X20 HEX NUTS (11).
- 6- ATTACH CLEANCOIL ASSY.(1) TO THE CLEANCOIL ENCLOSURE (2).
- 7- ATTACH CLEANCOIL COVER (3) TO THE CLEANCOIL ENCLOSURE (2), USING 2-10X32X1/4 SOCKET SCREWS(10), AND 2-BLACK KNOBS (9).
- 8- ATTACH OTHER SIDE OF 2-CLEANCOIL CABLES (18) TO THE TRANSFORMER (6).

NOTE

USING TEFLON TAPE FOR ALL ELBOW THREADS

t	1	1	
ITEM	PART #	DESCRIPTION	QTY
1	1068271,1	CLEANCOIL A, WRAPPING	1
2	1062558,1	ENCLOSURE A, WRAPPING	1
3	1062555.1	COVER, ENCLOSURE	1
4	4118953	ELBOW 3/8X1/4 NPT	2
5	1062620,1	PLATE, LOCATOR	2
6	1067666,5	TRANSFORMER ASSY,	1
7	1/4X20	LOCK NUTS 1/4X20/SS	2
8	1067704.1	BOWL ASSY.	1
9	4115590	KNOB, BLACK 99-602-5	1
10	10X32X1/4	SOCKET HEAD SCREW	1
11	1/4X20	HEX NUTS	2
12	1/4	SPLIT WASHERS	2
13	10X32	HEX NUTS	3
14	10X32	SPLIT WASHERS	3
15	10X32	FLAT WASHERS	3
16	1/4X20X1/4	HEX HEAD SCREWS	2
17	1/4	FLAT WASHERS	2
18	1073934,1	CLEANCOIL CABLES	2

BOWL ASSEMBLY INSTRUCTIONS 5 1600-55 A/M


	9300152.1
--	-----------

THIS PAGE INTENTIONALLY LEFT BLANK.

SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

ITEM PART # DESCRIPTIONS QTY	
1 4119823 CYLINDER, DOOR 1 2 4117745 VALVE, FLOW CONTROL FCP-2, BIMBA 2	
3 4119822 SWITCH, DOOR CYLINDER, BIMBA 1	
4 4117747 CLEVIS, ROD, BIMBA 1 6 1067629.1 ARM, FIXED PIVOT 1600-5 1	
6 1067629.1 ARM, FIXED PIVOT 1600-5 1 8 1067625.1 PIN, ARM FIXED 1600-5 1 (19)	
0 1007623.1 FIN, ARM FIXED 1600-3 1 10 4118942 FITTING, IMP42UAM FURON 2	
11 4117753 RING, SNAP 5100-21, WADES 2 (3)	
12 4117776 1/4DX1/2,10X24X3/8 STL.SOC HD SCR 5475 1	
16 4118347 CONTACT CONNECTOR 2 17 4120091 PIN CONNECTOR 18–16 2	

DOOR CYLINDER ASSEMBLY and INSTRUCTIONS 1 1600-55 A (Only)

DOOR CYLINDER ASSEMBLY and INSTRUCTIONS 2 1600-55 A (Only)

DOOR CYLINDER ASSEMBLY AND INSTRUCTIONS:

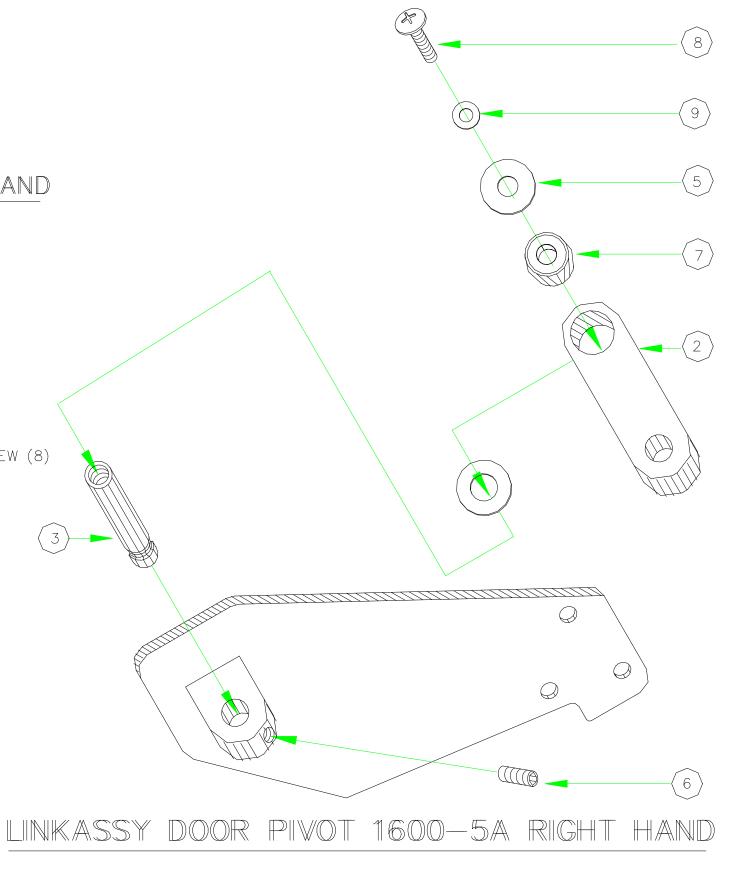
- USING TEFLON TAPE APPLY TO 2-FLOW CONTROL VALVES (2) AND 2-FITTINGS (10) THREAD. 1—
- ATTACH 2-FITTINGS (10) TO THE 2-FLOW CONTROL VALVES (2). 2-
- ATTACH 2-FLOW CONTROL VALVES (2) TO THE BIMBA CYLINDER (1). BE SURE 2-FITTINGS FACE BACK TO THE END OF CYLINDER (1). 3-
- SCREW ON THE 10X24 HEX NUT (5), AND THE CLEVIS ROD (4) TO THE SHAFT OF CYLINDER (1). 4-
- ATTACH SWITCH DOOR CYLINDER (3) TO THE BIMBA CYLINDER (1). MAKE SURE THE SWITCH TURN TO LEFT SIDE IF THE CLEVIS ROD (4) 5-FACE TO NORTH DIRECTION.

AUTOMATIC DOOR ASSEMBLY INSTRUCTIONS:

- ATTACH FRONT PANEL(17) TO THE BOLW FACE. 1—
- ATTACH REAR PIVOT PIN(19) TO THE REAR BOLW. 2—
- ATTACH FIXED PIVOT ARM(6) TO THE BOLW BY USING 1-10X24X3/8 HEX SCREW(12). 3-
- ATTACH DOOR CYLINDER(14) TO THE BOLW AT THE REAR PIVOT PIN(19). THEN TIGHTEN IT BY USING 1-6X32 HEX NUT(23) AND 1-6X FLAT WASHER(24). 4—
- REMOVE THE RING CLIP(11) AND ARM PIN(8) FROM CLEVIS ROD(4). 5-
- MOUNT THE HINGE, FRONT DOOR(1) TO THE FRONT PANEL(17). THE ARM PUSH(3) OF LINKASSY MUST GO THROUGH THE LITTLE WINDOW OF FRONT 6-PANEL(17). USING 2-10X32X1/2 SOCKET HEAD SCREW(22), 2-10X32 STAR WASHERS(21), AND 2-10X32 FLAT WASHERS(20).
- 7— SLIDE PUSH ARM(2) INTO THE CLEVIS ROD(4) OF THE CYLINDER. LEAVES IT SIT ON TOP OF THE FIXED ARM PIVOT(6), THEN INSERT BACK THE ARM PIN (8) AND RING CLIP(11).

SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

LINKASSY. DOOR PIVOT 1600-5A RIGHT HAND ASSEMBLY AND INSTRUCTIONS


1-ATTACH PIN PIVOT (3) TO THE BRACKET DOOR PIVOT, THEN TIGHTEN IT BY USING 1-6X32X3/8 SOCKET SET SCREW (9).
2-ATTACH THE WASHER PIVOT (4) TO THE PIN PIVOT (3).
3-SNAP THE BEARING (7) INTO THE ARM PUSH (2).
4-ATTACH THE WASHER LOCK PIVOT (5) TO THE PIN PIVOT (3), ON TOP OF THE BEARING ((7).

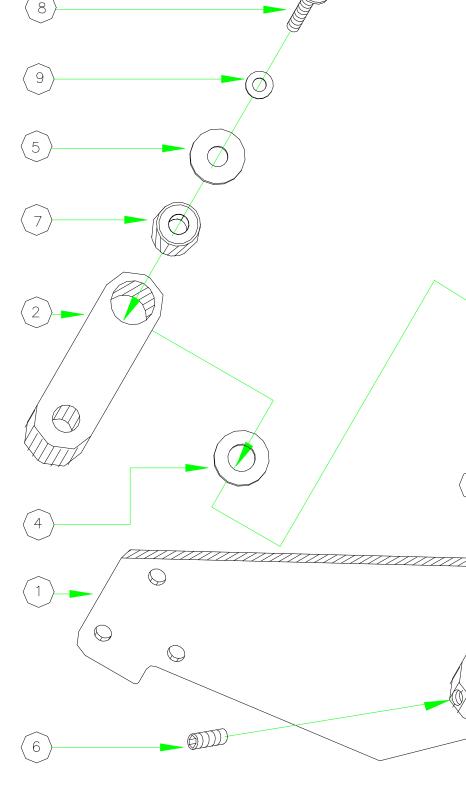
5-ATTACH 1-4X FLAT WASHER AND 1-4X40X5/16 TRUSS HEAD SCREW (8) TO THE PIVOT PIN(3), THEN TIGHTEN IT.

ITEM	PART #	DESCRIPTIONS	QTY
1	1071933.1	BRACKET DOOR PIVOT L/RH	1
2	1071929.1	ARM PUSH	1
3	1071930.1	PIN PIVOT	1
4	1071931.1	WASHER PIVOT	1
5	1071932.1	WASHER LOCK PIVOT	1
6	6X32X3/8	SOCKET SET SCREW CONE POINT SS	1
7	4119872	BEARING, SPHERICAL CORR RES 3/16	1
8	4X32X5/16	TRUSS HEAD SCREW	1
9	4X	FLAT WASHER	1

-1 SHOWN

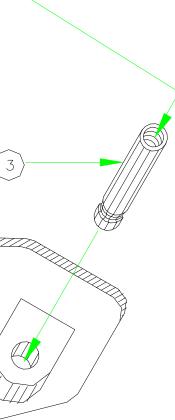
SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

DOOR PIVOT ASSEMBLY and INSTRUCTIONS 1 1600-55 A (Only)

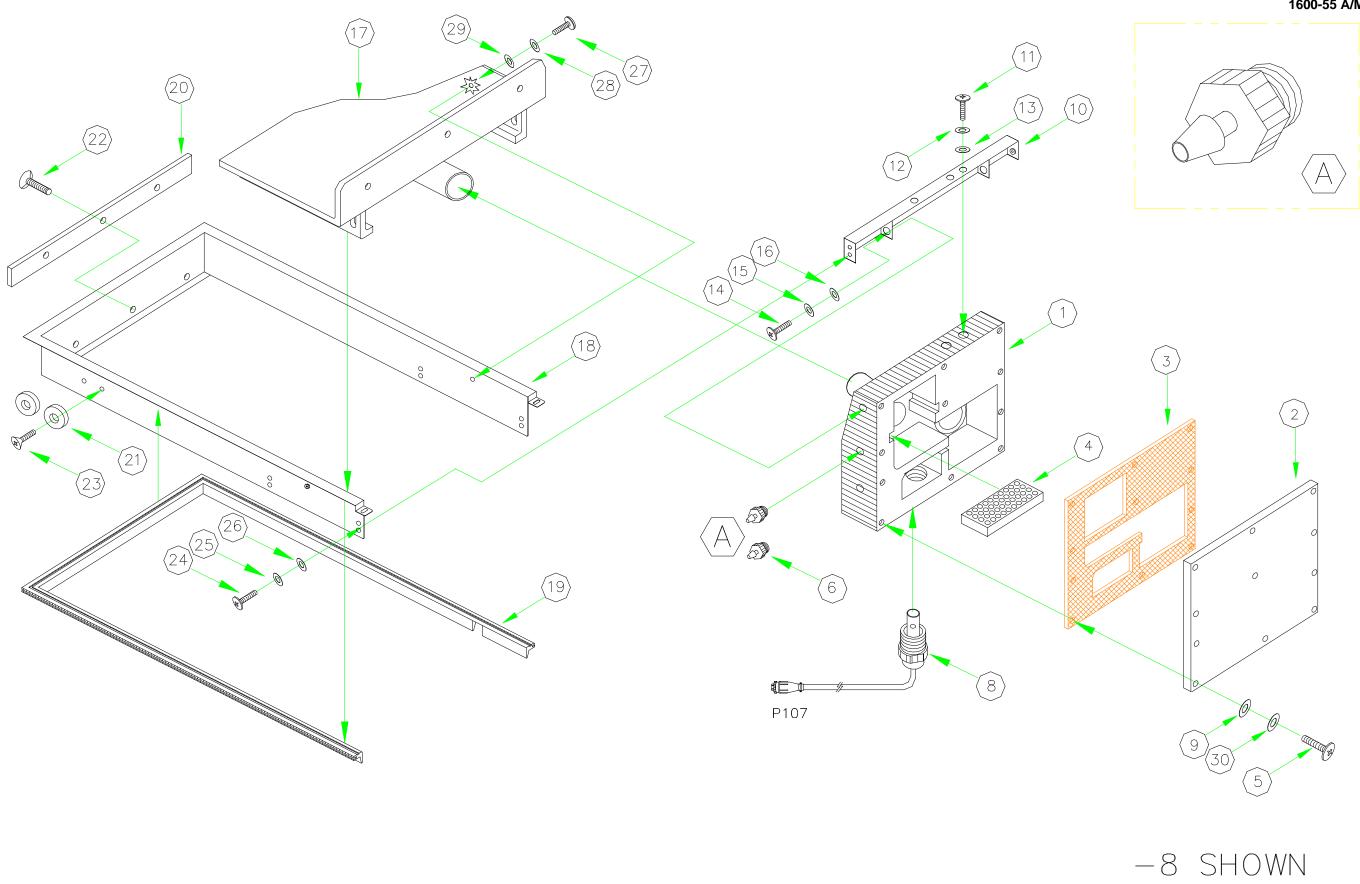

DOOR PIVOT ASSEMBLY and INSTRUCTIONS 2 1600-55 A (Only)

LINKASSY. DOOR PIVOT 1600-5A LEFT HAND ASSEMBLY AND INSTRUCTIONS

1-ATTACH PIN PIVOT (3) TO THE BRACKET DOOR PIVOT, THEN TIGHTEN IT BY USING 1-6X32X3/8 SOCKET SET SCREW (9). 2-ATTACH THE WASHER PIVOT (4) TO THE PIN PIVOT (3). 3-SNAP THE BEARING (7) INTO THE ARM PUSH (2). 4-ATTACH THE WASHER LOCK PIVOT (5) TO THE PIN PIVOT (3), ON TOP OF THE BEARING ((7).

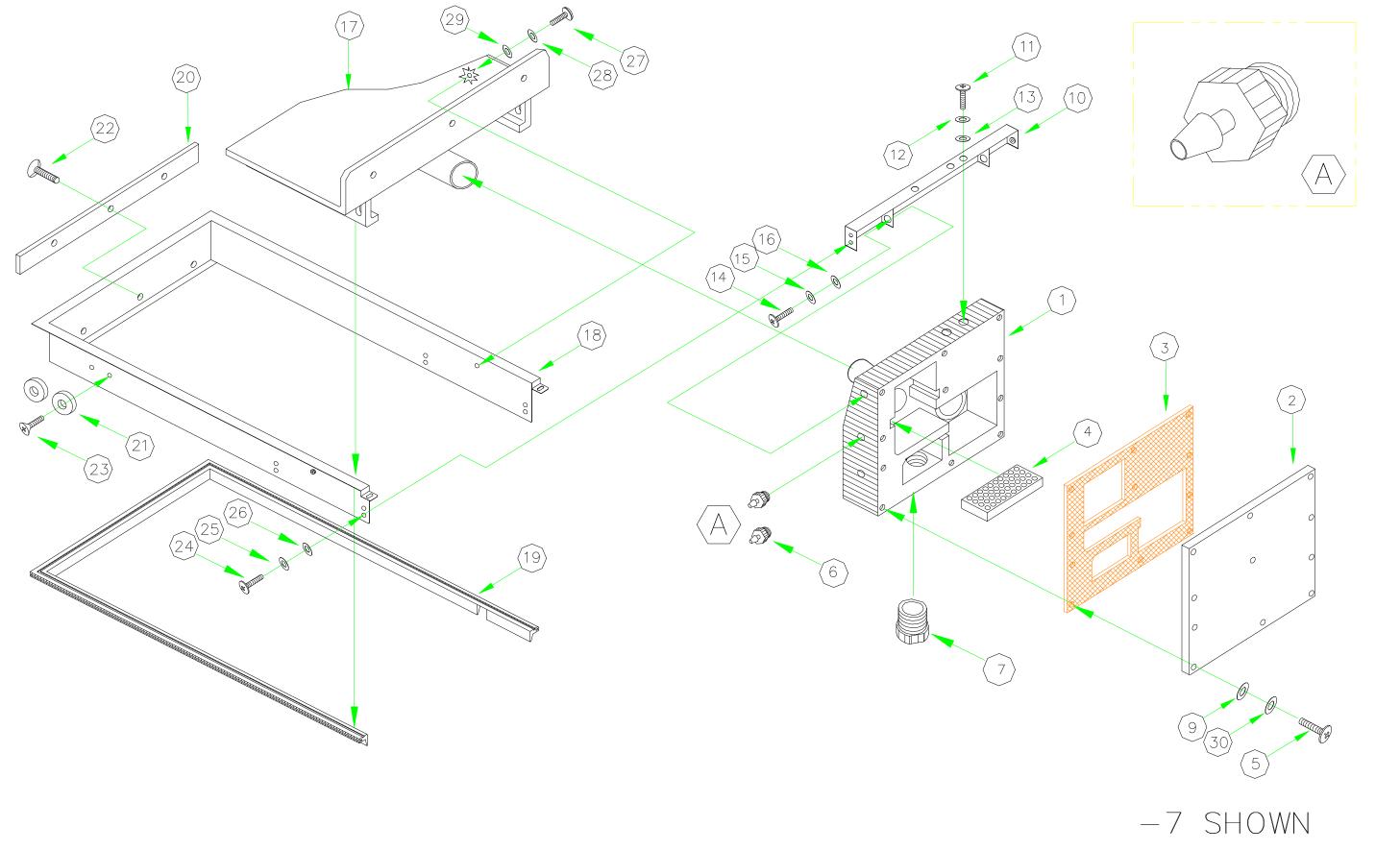

5-ATTACH 1-4X FLAT WASHER AND 1-4X40X5/16 TRUSS HEAD SCREW (8) TO THE PIVOT PIN(3), THEN TIGHTEN IT.

ITEM	PART #	DESCRIPTIONS	QTY
1	1071933.1	BRACKET DOOR PIVOT L/RH	1
2	1071929.1	ARM PUSH	1
3	1071930.1	PIN PIVOT	1
4	1071931.1	WASHER PIVOT	1
5	1071932.1	WASHER LOCK PIVOT	1
6	6X32X3/8	SOCKET SET SCREW CONE POINT SS	1
7	4119872	BEARING, SPHERICAL CORR RES 3/16	1
8	4X32X5/16	TRUSS HEAD SCREW	1
9	4X	FLAT WASHER	1



LINKASSY DOOR PIVOT 1600-5A LEFT HAND

-2 SHOWN



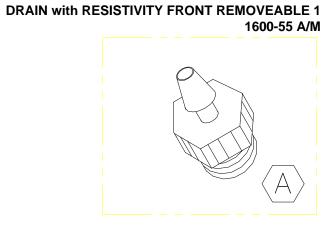
SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

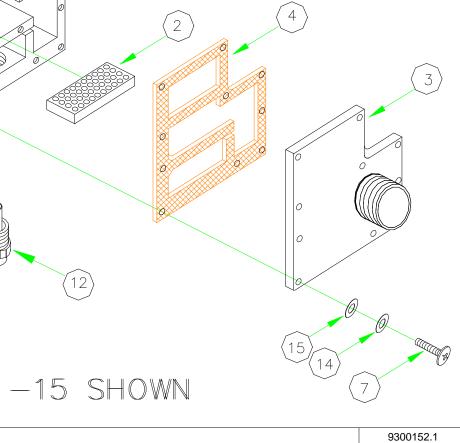
DRAIN with RESISTIVITY BAY and CHASE 1 1600-55 A/M

DRAIN without RESISTIVITY BAY and CHASE 2 1600-55 A/M

B & C DRAIN RESIST. ASSEMBLY INSTRUCTIONS

- 1- CLUE GASKET BASE(19) TO WELDMENT BASE MOUNT(18), AND ATTACH STOP BASE ASSY.(20) TO FRONT OF WELDMENT BASE(18). USING 3-10X32X1/2 FLAT HEAD SCREWS(22).
- 2- SLIDE SCREEN DRAIN(4) INTO DRAIN BOX(1).
- 3- ATTACH GASKET DRAIN(3) TO DRAIN BOX(1). THEN ATTACH DRAIN COVER(2), USING 11-8X32X3/4 TRUSS HEAD SCREWS(5), 11-8X32 STAR WASHERS(14), AND 11-8X32 FLAT WASHERS(15).
- 4- ATTACH 2-1/16 FITTING(6) TO LEFT SIDE OF DRAIN BOX(1). (THE CLEAR DRAIN BOX COVER IS FACING TO YOU).
- 5- USING TEFLON TAPE WRAP AROUND THE THREADS OF RESIST. PROBE(12). THEN ATTACH IT TO BOTTOM OF DRAIN BOX(1).
- 6- ATTACH BASE CROSS MEMBER(10) TO TOP OF DRAIN BOX(1), USING 2-10X32X3/4 TRUSS HEAD SCREWS(11), 2-10X32 STAR WASHERS(12), AND 2-10X32 FLAT WASHERS(13). THEN USING 2-10X32X3/4 TRUSS HEAD SCREWS(14), 2-10X32 STAR WASHERS(15), AND 2-10X32 STAR(15) AND 2-10X32 FLAT WASHERS(16) MOUNT THROUGH LEFT AND RIGHT SIDE OF THE DRAIN BOX(1).
- 7- ATTACH DRAIN BOX SET(1) WITH BASE CROSS MEMBER(10) TO WELDMENT BASE(18). USING 4-8X32X3/8 TRUSS HEAD SCREWS(24), $4-8\times32$ STAR WASHERS(25), AND $4-8\times32$ FLAT WASHERS(26).

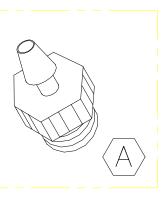

ITEM	PART #	DESCRIPTIONS	QTY
1	1067646.1	BOX, DRAIN 1600-5	1
2	1067641.1	COVER, DRAIN BOX 1600-5	1
3	1067640.1	GASKET, DRAIN BOX 1600–5	1
4	1067621.1	SCREEN, DRAIN 1600-5	1
5	8X32X3/4	TRUSS HEAD SCREWS	11
6	4114030	FITTING, BARB, 1/16–10X32	2
7	4117303	PLUG, 3/4	1
8	1067803.1	PROBE, RESISTIVITY CABLE ASSY.	1
9,26	8X32	FLAT WASHERS	15
10	1073217.1	BASE CROSS MEMBER	1
11,14,27	10X32X3/4	TRUSS HEAD SCREWS	6
12,15,28	10X32	STAR WASHERS	6
13,16,29	10X32	FLAT WASHERS	6
17	1067656.1	BASE PLATE	1
18	1067653.1	WELDMENT BASE MOUNT	1
19	1067637.1	GASKET BASE	1
20	1067649.1	STOP BASE	1
21	1067650.1	GUIDE, BASE	4
22,23	10X32X1/2	FLAT SCREWS	7
24	8X32X3/8	TRUSS HEAD SCREWS	4
30,25	8X32	STAR WASHERS	15

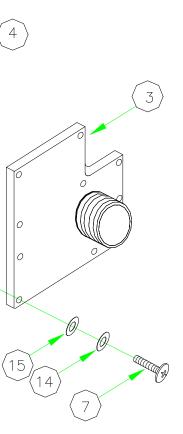

NOTE

FOR THE SYSTEM WITH OUT RESISTIVITY. REPLACE PROBE RESISTIVITY BY USING 1-3/4 PLUG(7) TO THE BOTTOM OF DRAIN BOX(1).

DRAIN BAY and CHASE 3 1600-55 A/M

ITEM	PART #	DESCRIPTIONS	QTY	
	1069785.1	BOX, DRAIN 1600-5		
2	1067879.1	SCREEN, DRAIN BOX	1	
3	1069490.1	COVER, DRAIN BOX GASKET, DRAIN BOX	1	
4	1067878.1		1	
6	1069435.1	DRAIN ADAPTOR FRT REM.		
	8X32X3/4	TRUSS HEAD SCREWS	11	
8	1069436.1	SUPPORT, GUIDE, DRAIN ASSY.	1	
9	4114316	O-RING, EPDM 2-121	1	
10	4114030	FITTING BARB, 1/16 TUBE	2	
12	1067621.1	PROBE, RESISTIVITY&CABLE	1	Ą
13	1067656.1	BASE PLATE	1	
14	8X32	STAR WASHERS	11	
15	8X32	FLAT WASHERS	11	
16	1/4X20X3/4	SOCKET HEAD SCREWS	2	
17	1/4X20	SPLIT WASHERS	2	
18	1/4X20	FLAT WASHERS	2	P107
19	1/4X20X1	HEX HEAD SCREWS	2	
20	1/4X20	SPLIT WASHERS	2	
21	1/4X20	FLAT WASHERS	2	

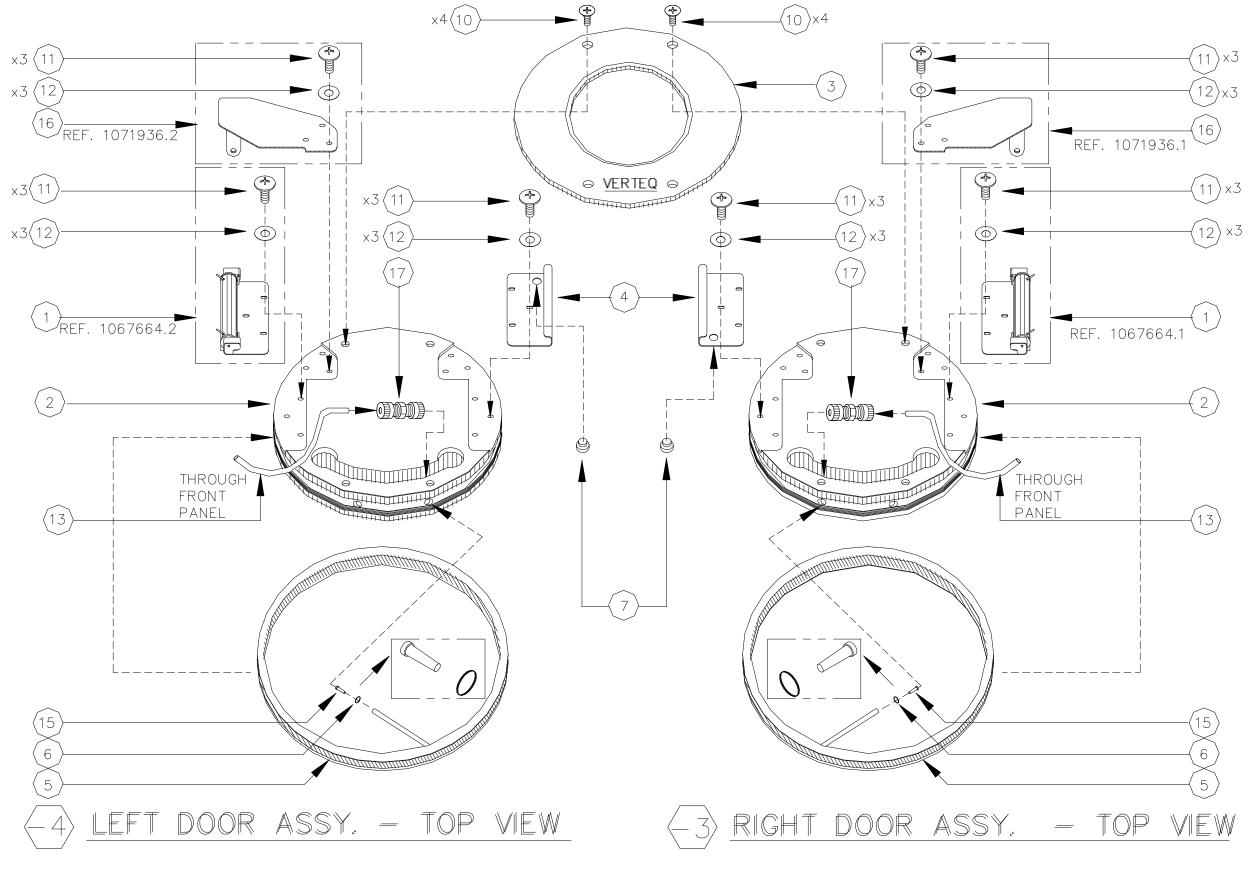




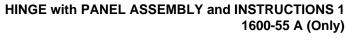
DRAIN without RESISTIVITY FRONT REMOVEABLE 2 1600-55 A/M

_	~				9			
(1.	3		$\langle 21 \rangle$	Ô				
					~			
		0		\bigcirc	20)			
K					~			
			× /]/					
				$\langle 10 \rangle \langle A \rangle$				
			0					
			99		N			
	and w			6	/			
à								
)	(17	(18)			\sim	($\overrightarrow{1}$	
		<i>J</i>			$\langle 9 \rangle \approx$		\sim	
	$\langle 1_{\rm C} \rangle$							
	$\langle 16 \rangle$							
ΞM		DESCRIPTIONS						\frown
<u>= M</u>	PART #	DESCRIPTIONS BOX, DRAIN 1600-5	QTY 1					$\left(2\right)$
1	PART # 1069785.1	DESCRIPTIONS BOX, DRAIN 1600-5 SCREEN, DRAIN BOX						2
1 2	PART #	BOX, DRAIN 1600-5	1				620	2
1 2 3	PART # 1069785.1 1067879.1	BOX, DRAIN 1600-5 Screen, drain box	1					2
2 3 1	PART # 1069785.1 1067879.1 1069490.1 1067878.1	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX	1 1 1					2
2 3 1	PART # 1069785.1 1067879.1 1069490.1	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX	1 1 1 1					2
2 3 1 5 7	PART # 1069785.1 1067879.1 1069490.1 1067878.1 1069435.1 8X32X3/4	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS	1 1 1 1 1					2
23 3 33	PART # 1069785.1 1067879.1 1069490.1 1067878.1 1069435.1 8X32X3/4 1069436.1	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY.	1 1 1 1 1 1 1 11					
2 3 1 5 7 3	PART # 1069785.1 1067879.1 1069490.1 1069435.1 1069435.1 8X32X3/4 1069436.1 4114316	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121	1 1 1 1 1 1 1 1 1 1 1					
2 3 4 5 7 3 9	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE	1 1 1 1 1 1 1 1 1 1					
2 3 1 5 7 3 9 1 0	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC	1 1 1 1 1 1 1 1 1 1 2					
2 3 4 5 7 3 9 0 1 3	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE	1 1 1 1 1 1 1 1 1 2 1 1 1					
 2 3 4 5 7 7 8 9 10 11 13 14	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS	1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1					
1 22 33 44 55 77 7 8 99 10 11 13 14 15	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32 8X32 8X32	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS FLAT WASHERS	1 1					
1 2 3 3 4 6 7 7 7 8 9 10 11 13 14 15 16	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32 8X32 8X32 1/4X20X3/4	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS FLAT WASHERS SOCKET HEAD SCREWS	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1				1	
1 2 3 4 6 7 7 8 9 10 11 13 14 15 16 17	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32 8X32 1/4X20X3/4 1/4X20	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS FLAT WASHERS SOCKET HEAD SCREWS SPLIT WASHERS	1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1				1	
1 2 3 4 6 7 8 9 10 11 13 14 15 16 17 18	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32 8X32 1/4X20X3/4 1/4X20 1/4X20	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS FLAT WASHERS SOCKET HEAD SCREWS SPLIT WASHERS FLAT WASHERS	1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1				1	
1 2 3 4 6 7 8 9 10 11 13 14 15 16 17 18 19	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32 8X32 1/4X20X3/4 1/4X20 1/4X20 1/4X20X1	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS FLAT WASHERS SOCKET HEAD SCREWS SPLIT WASHERS FLAT WASHERS HEX HEAD SCREWS	1 2 2 2 2 1 <td></td> <td></td> <td></td> <td>1</td> <td></td>				1	
EM 1 2 3 4 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21	PART # 1069785.1 1067879.1 1069490.1 1069435.1 8X32X3/4 1069436.1 4114316 4114030 4117303 1067656.1 8X32 8X32 1/4X20X3/4 1/4X20 1/4X20	BOX, DRAIN 1600-5 SCREEN, DRAIN BOX COVER, DRAIN BOX GASKET, DRAIN BOX DRAIN ADAPTOR FRT REM. TRUSS HEAD SCREWS SUPPORT, GUIDE, DRAIN ASSY. O-RING, EPDM 2-121 FITTING BARB, 1/16 TUBE PLUG, 3/4 NTP PVC BASE PLATE STAR WASHERS FLAT WASHERS SOCKET HEAD SCREWS SPLIT WASHERS FLAT WASHERS	1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1				1) 7 SH(

9300152.1



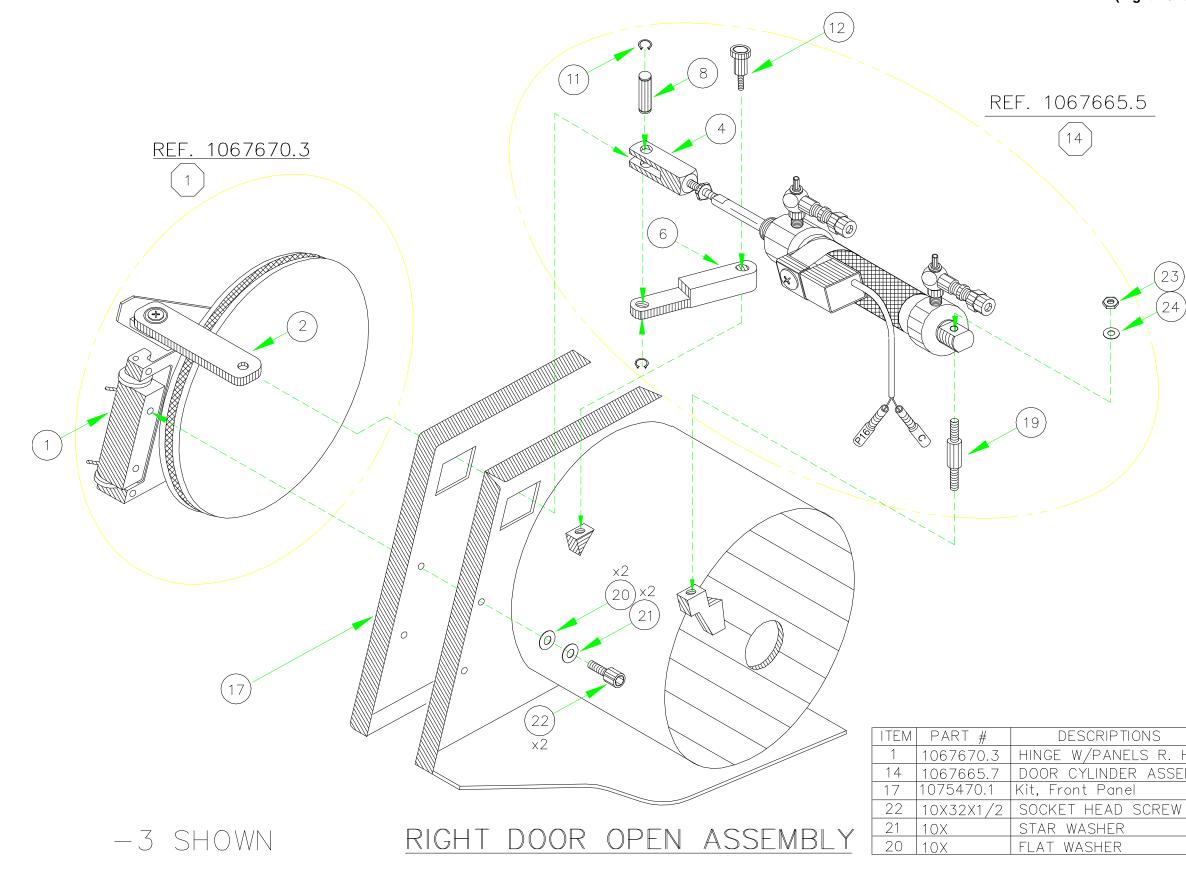
FRONT REMOVEABLE DRAIN RESIST. ASSEMBLY INSTRUCTIONS


- 1- ATTACH 2-1/16 FITTING(10) TO DRAIN ADAPTOR(6).
- 2- SLIDE DRAIN SCREEN(2) INTO DRAIN BOX(1).
- 3- ATTACH GASKET DRAIN(4) TO DRAIN BOX(1). THEN ATTACH DRAIN COVER(3), USING 11-8X32X3/4 TRUSS HEAD SCREWS, 11-8X32 STAR WASHERS(14), AND 11-8X32 FLAT WASHERS(15).
- 4- USING TEFLON TAPE WRAP AROUND THE THREADS OF RESIST. PROBE(12). THEN ATTACH TO BOTTOM OF DRAIN BOX(1).
- 5- ATTACH DRAIN SUPPORT GUIDE(8) TO DRAIN ADAPTOR(6). USING 2-1/4X20X1 HEX SCREWS(19), 2-1/4X20 SPLIT WASHERS(20), AND 2-1/4X20 FLAT WASHERS(20).
- 6- ATTACH DRAIN SUPPORT GUIDE(8) WITH DRAIN ADAPTOR(6) TO REAR OF BASE PLATE(13). USING 2-1/4X20X3/4 SOCKET SCREWS(16), $2-1/4\times20$ SPLIT WASHERS(17), AND $2-1/4\times20$ FLAT WASHERS(18).
- 7- ATTACH DRAIN BOX ASSY. SET(1) TO DRAIN ADAPTOR(6).

NOTE FOR THE SYSTEM WITH OUT RESISTIVITY. REPLACE PROBE RESISTIVITY BY USING 1-3/4 PLUG(11) TO THE BOTTOM OF DRAIN BOX(1).

DRAIN FRONT REMOVEABLE 3 1600-55 A/M

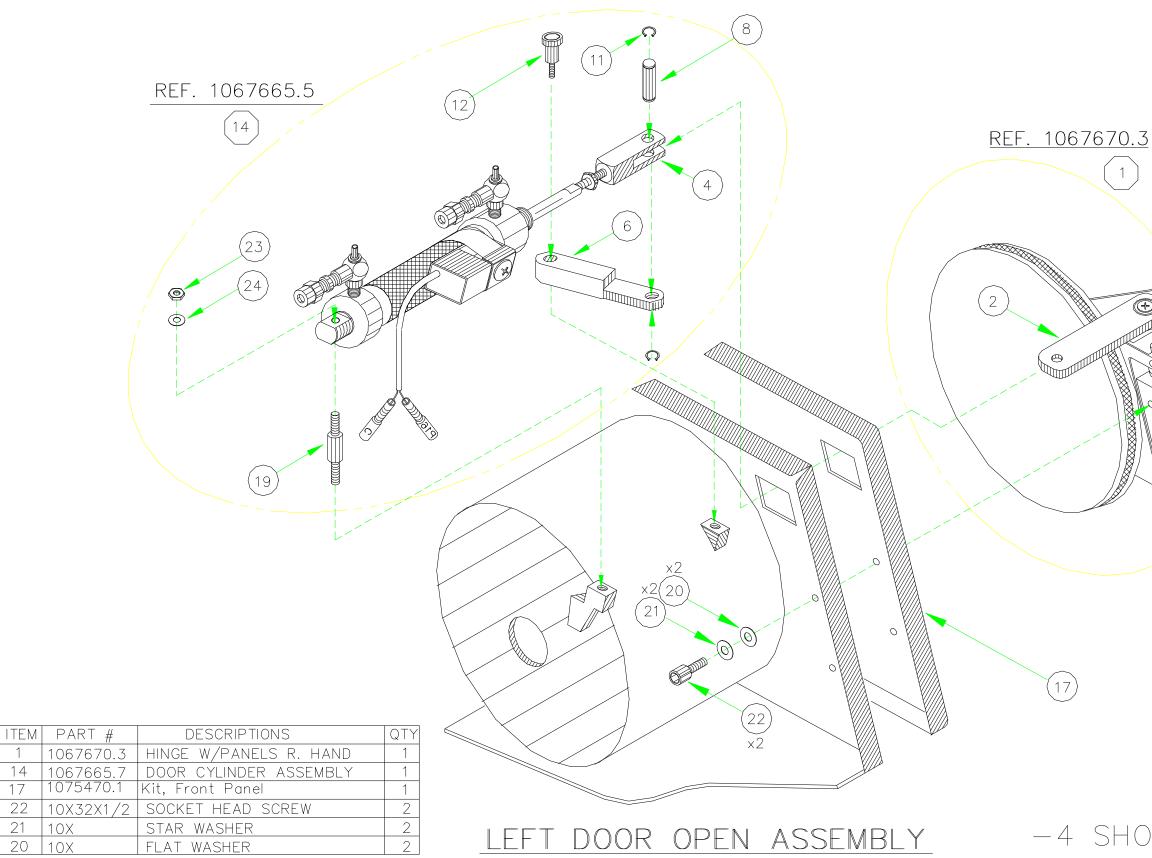

9300152.1



HINGE with PANEL ASSEMBLY and INSTRUCTIONS 2 1600-55 A (Only)

- ATTACH HINGE ASSY. LEFT OR RIGHT HAND(1) TO THE SOLID CLEAR LID(2), USING 3-8X32X1/2 ROUND HEAD SCREWS(11), 1— AND 3-8X32 FLAT WASHERS(12).
- ATTACH LINKASSY DOOR PIVOT L. OR R. HAND(16) TO THE SOLID CLEAR LID(2), USING 3-8X32X1/2 ROUND HEAD SCREWS(11), 2-AND 3-8X32 FLAT WASHERS(12)
- ATTACH L. OR R. HAND DOOR HANDLE(4) TO THE SOLID CLEAR LID(2), USING 3-8X32X1/2 ROUND HEAD SCREWS(11), 3-AND 3-8X32 FLAT WASHERS(12).
- ATTACH 1-1/4-3' TYGON TUBE(13) TO THE 1-1/4 FITTING(17). 4—
- INSERT THE TUBE OF DOOR SEAL(5) THROUGH THE HOLE OF SOLID CLEAR LID(2), ATTACH VITON O-RING(6), 5-THEN INSERT 1-1/4 INSERT TUBING(15) TO THE TUBE OF DOOR SEAL(5).
- ATTACH 1-1/4 FITTING(17) AND -1/4-3' TYGON TUBE(13) TO THE TUBE OF DOOR SEAL(5), THEN PUSH THE FITTING(17) 6-INTO THE SPACE, WHERE THE DOOR SEAL TUBE(5) COMES OUT.
- ATTACH THE SILKSCREEN DOOR COVER(3) TO THE SOLID CLEAR LID(2), USING 4-8X32X1/2 FLAT HEAD SCREWS(10). 7—

	-		
ITEM	PART #	DESCRIPTIONS	
1	1067664.1	HINGE ASSY, RIGHT HAND	
2	1067661.3	SOLID CLEAR LID, LEFT OR RIGHT HAND	
3	1067660.3	SILKSCREEN DOOR COVER	
4	1067118.1	DOOR HANDLE	
5	1064788.1	DOOR SEAL	
6	4120866	VITON O-RING	
7	1062533.1	BUTTON, STOP MINI	
8	1067662.1	BRACKET, DOOR PIVOT	
10	8X32X1/2	FLAT HEAD SCREWS, CAD PLATED STEEL	
11	8X32X1/2	ROUND HEAD SCREWS, CAD PLATED STEEL	
12	8X32	FLAT WASHERS, CAD PLATED STEEL	
13	1/4-3'	1/4 TYGON TUBE	
14	1067665.5	DOOR CYLINDER ASSEMBLY	
15	4117513	INSERT, TUBING 1/4	
16	1071936.1	LINKASSY DOOR PIVOT RIGHT HAND	
17	4118950	1/4 FITTING	

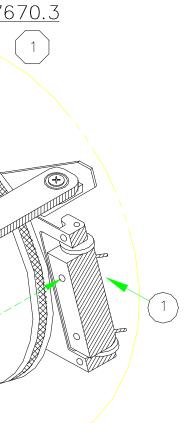


HINGE with PANEL ASSEMBLY and INSTRUCTIONS 3 (Right-Hand) 1600-55 A (Only)

Γ#	DESCRIPTIONS	QTY
70.3	HINGE W/PANELS R. HAND	1
65.7	DOOR CYLINDER ASSEMBLY	1
70.1	Kit, Front Panel	1
X1/2	SOCKET HEAD SCREW	2
	STAR WASHER	2
	FLAT WASHER	2

9300152.1

HINGE with PANEL ASSEMBLY and INSTRUCTIONS 4 (Left-Hand) 1600-55 A (Only)

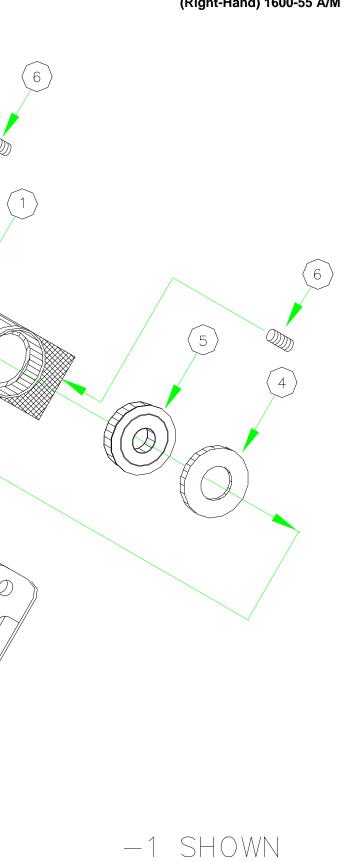


14

17

22

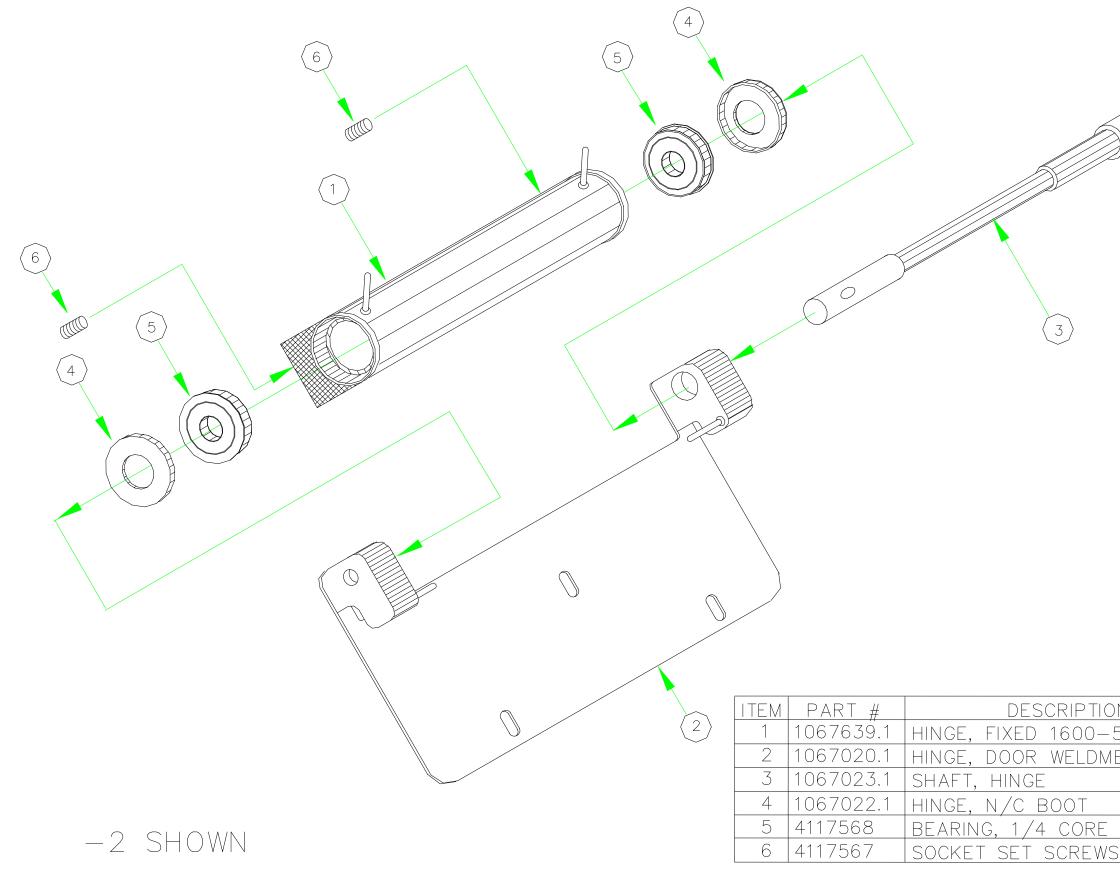
21



-4 SHOWN

PART # 1067639.1 1067020.1 1067023.1 1067022.1 4117568 4117567	DESCRIPTIONS HINGE, FIXED 1600-5 HINGE, DOOR WELDMENT L. C SHAFT, HINGE HINGE, N/C BOOT BEARING, 1/4 CORE SOCKET SET SCREWS	QTY 1 2 2 2 2 2	

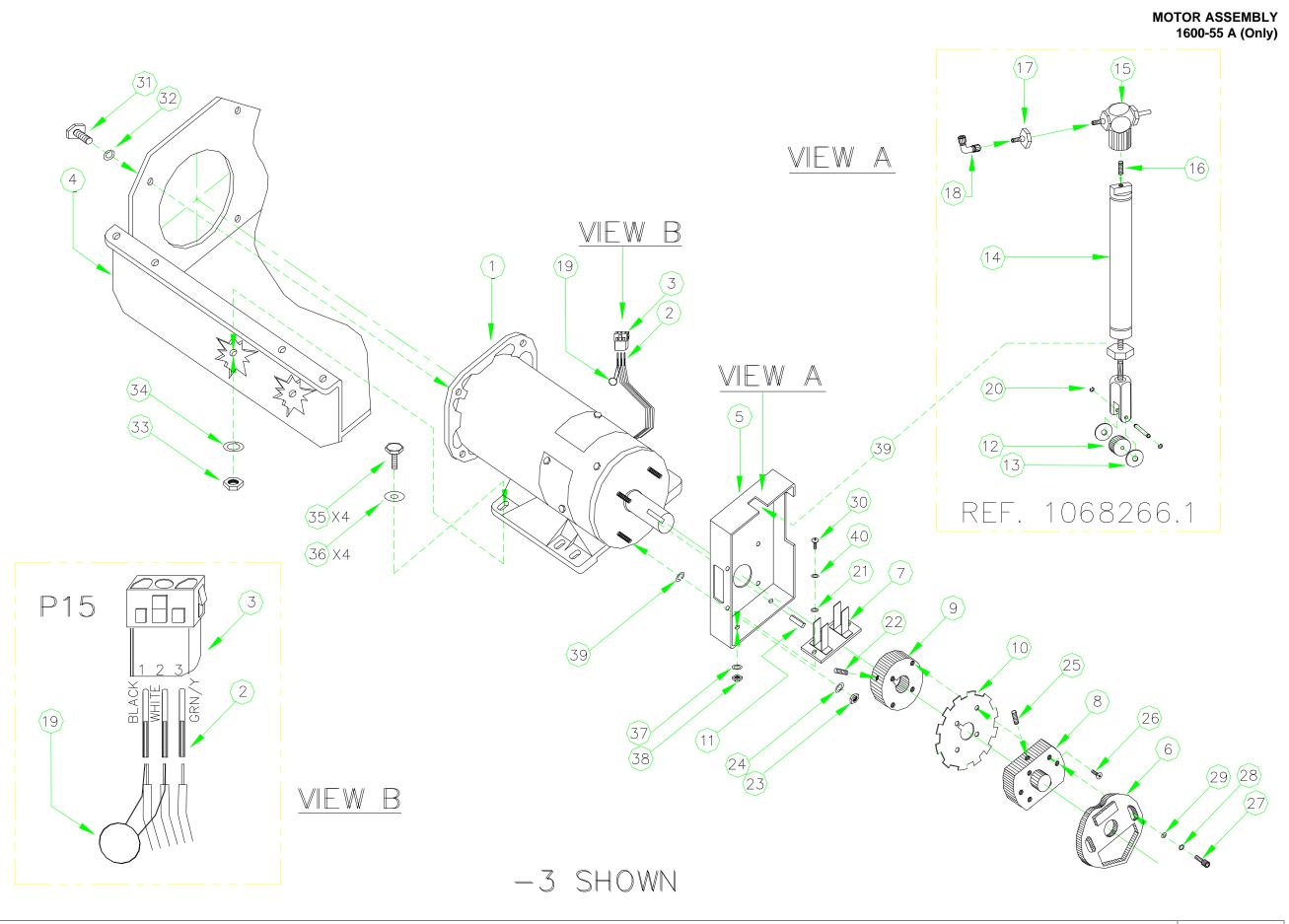
ITEM


6

HINGE ASSEMBLY and INSTRUCTIONS 1 (Right-Hand) 1600-55 A/M

9300152.1

HINGE ASSEMBLY and INSTRUCTIONS 2 (Left-Hand) 1600-55 A/M

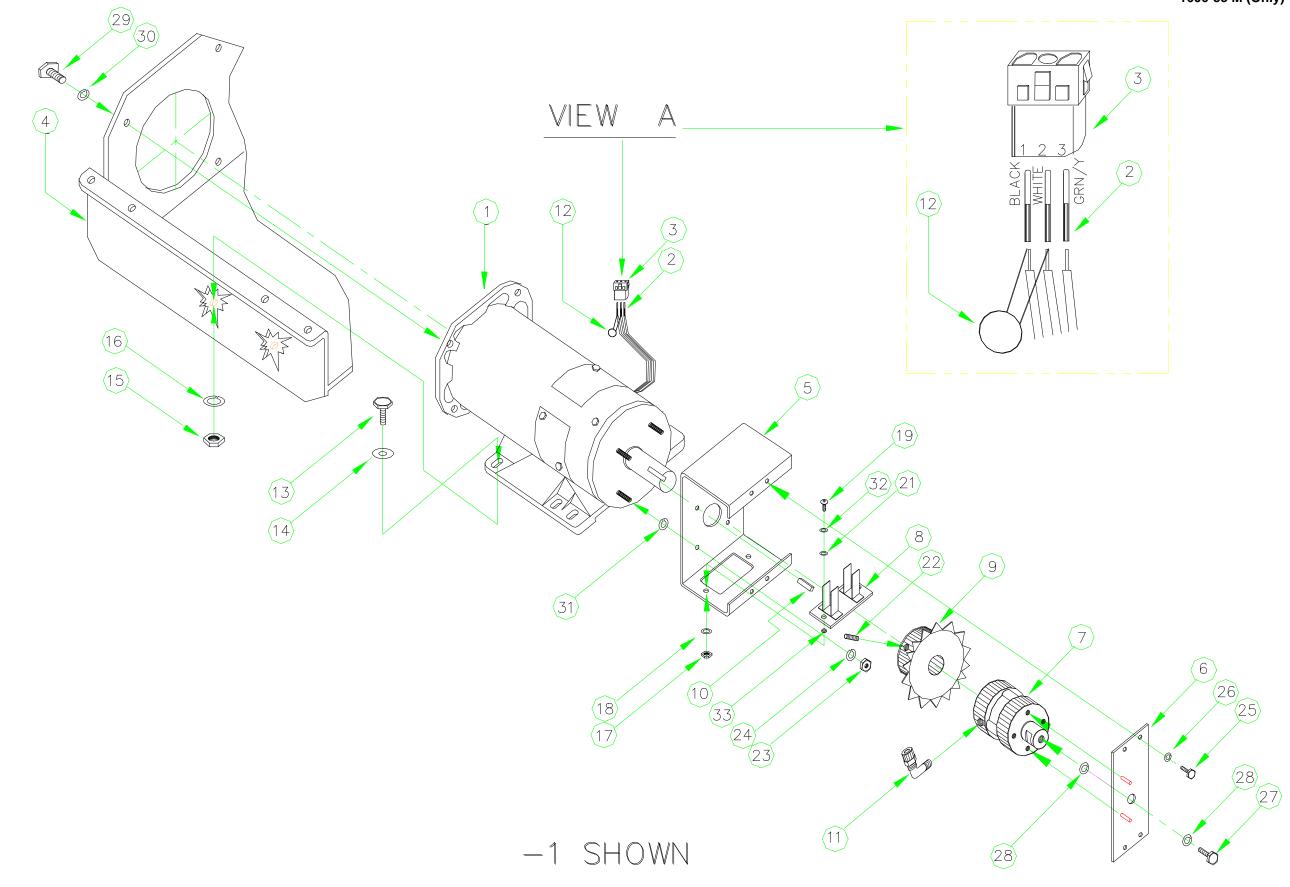


NS				QTY
5				1
ENT	L.	OR	R.	1
				1
				2
				2
				2

LEFT AND RIGHT HAND HINGE ASSEMBLY INSTRUCTIONS:

SNAP 2-1/4 BEARINGS (5) INTO BOTH SIDES OF THE FIXED HINGE (1). 1— ATTACH 2-BOOTS HINGE (4) TO EACH SIDE OF THE FIXED HINGE (1), NEXT OF BEARINGS. 2-HOLD BOTH SIDES OF THE FIXED HINGE (1), THEN SLIDE IT INTO THE FIXED DOOR HINGE(2). 3-INSERT THE SAFT, HINGE (3) FROM THE BIG HOLE OF THE DOOR HINGE (2) THROUGH FIXED HINGE (1). 4-(BE SURE 2-LOCK HOLES OF THE SHAFT HINGE IS MATCHING WITH 2-HOLES OF THE SOCKET SET SCREWS). TIGHTEN 2-10X32X3/8 SOCKET SET SCREWS (6) TO LOCK THE SHAFT HINGE (3). 5-

HINGE ASSEMBLY and INSTRUCTIONS 3 1600-55 A/M



MOTOR ASSEMBLY INSTRUCTIONS and PARTS LISTS 1600-55 A (Only)

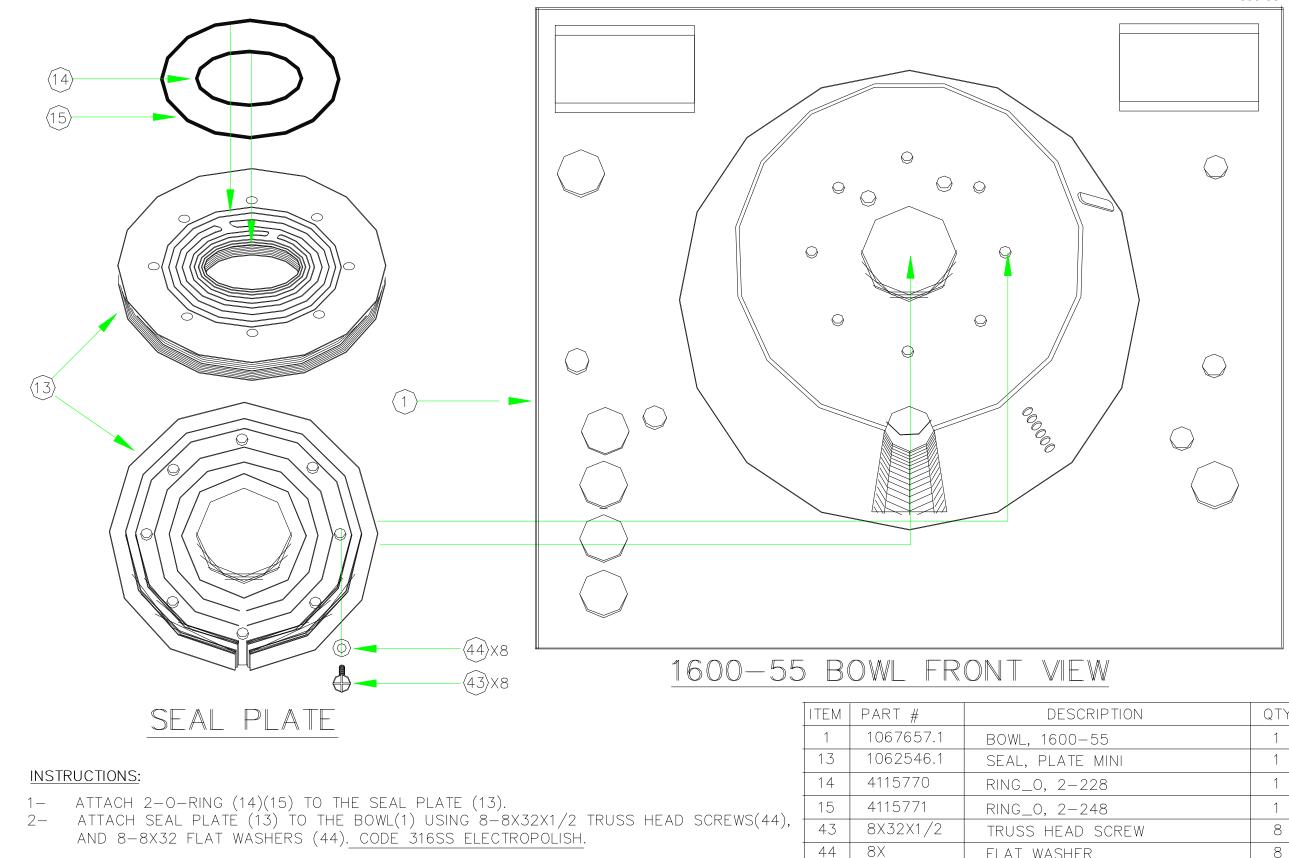
1600-55A MOTOR ASSEMBLY INSTRUCTIONS

- ATTACH MOTOR (1) TO THE BRACKET MOTOR (4) USING 4-3/8X1 HEX HEAD SCREWS (31), AND 4-3/8 SPLIT WASHERS (32) (FRONT OF MOTOR BRACKET). 1-USING 4-1/4X20X3/4 HEX HEAD SCREWS (35), 4-1/4 FLAT WASHERS (36). TO INSEATED THROUGH THE BASE OF MOTOR, USING 4-1/4 SPLIT 2 -WASHERS ((34) AND 4-1/4 HEX NUTS (33) TO MOUNT THROUGH THE BOTTOM OF THE BRACKET.
- TIE WRAP ALL THREE COLOR WIRES ABOUT 1/2" FROM THE HOLE, THEN MEASURE 14" OF WIRE FROM THE HOLE AND CUT ALL THREE WIRES THE SAME 3-LENGTH, THEN STRIP OFF 1/16" TO 1/8" OF INSULATION FROM WIRES. THEN APPLY ONE PIN TO GREEN WIRE, KNOW WITH ONE VASISTOR (19) INSOLATE WITH BOTH PRONGS WITH SINGLE TUBING (MAKE SURE YOU HAVE 1/8" AT THE PRONGS). THE CRIMP VASISTOR (19) WITH BLACK AND WHITE WIRE. USING CONNECTOR HOUSING (3) BY SETTING #3 PIN WITH GREEN, #2 PIN WITH WHITE, AND #1 PIN WITH BLACK. THEN MARKED CONNECTOR P-15.
- PUT 4-1/4 SPLIT WASHERS (39) ON TO THE MOTOR STUDS. THEN MOUNT ON THE MOUNTING BRACKET (5) TO THE REAR OF THE MOTOR. USING 4-1/4 4-SPLIT WASHERS (24), AND 4-1/4 HEX NUTS (23) TO MOTOR STUDS.
- 5-SET ROTOR SHAFT AT A 12 OCLOCK POSITION FOR INDEX ASSEMBLY.
- SET 1-8X32X1/2 SET SCREW (11) INTO WHEEL SHAFT (9), AND USING KEY MOTOR (11) WITH WHEEL SHAFT #(9). THEN PLACE ONTO MOTOR SHAFT 6 -AND GAP OUT .050 FROM THE MOUNTING BRACKET PLATE (A LARGE TIE WRAP IS EQUIVALENT OF .050 GAP METERIAL). INSTALL OPTIC SENSOR BOARD TO THE MOUNTING BRACKET PLATE BY INSERTING 2-6X32X1/2 ROUND HEAD SCREW (30) WITH 2-6X32 FLAT WASHERS
- 7-(21), AND 2-6X32 STAR WASHERS (40). THEN HAND TIGHTEN THE SENSOR BOARD WITH 2-6X32 STAR WASHERS (37), AND 2-6X32 HEX NUTS (38).
- PLACE PHOTO SHELL CAREFULLY INTO MOTOR SHAFT. 8-
- PLACE 1-8X32X1/2 SETSCREW (25) INTO SHAFT FLANGE. 9-
- ATTACH SHAFT FLANGE ONTO MOTOR SHAFT. TIGHTEN ALL SET SCREWS, THEN REMOVE THE GAP METERIAL. 10 -
- 11 -TO ADJUST SENSOR BOARD FOR CORRECT INDEXING, YOU MUST NEED A OPTICAL SENSOR TESTOR BY APPLYING THE CONNECTOR TO THE BOTTOM OF THE SENSOR PLATE. MOVE THE SENSOR PLATE LEFT TO RIGHT, YOU CAN GET A LIGHT READING ON THE TESTOR.
- ***SET THE MOTOR SHAFT IN A 12 O'CLOCK POSITION, THEN TIGHTEN THE SENSOR DOWN. MOUNT IN SET OF 4-8X32X1 FLAT SCREWS (26) TO THE SHAFT FLANGE (8). 12-
- ATTACH THE CAM AUTO-POSITIONER (6) BY 2-1/4X20X1/2 SOCKET SCRÈWS (27), 2X1/4 SPLIT WASHERS (28), AND 2-1/4 FLAT WASHERS. 1.3 -
- REMOVE THE DUST COVER AT THE TOP END OF BIMBA CYLINDER (14). 14 -
- 15-USING A TEFLON TAPE TO WRAP THE THREADS OF THE 1/4 BRASS NIPPLE (16) 4 TIMES.
- ATTACH THE BRASS NIPPLE (16) INTO THE TOP OF THE BIMBA CYLINDER, THEN HANDS TIGHTEN IT. 16 -
- 17- ATTACH THE FLOW CONTROL VALVE (15) INTO BRASS NIPPLE (16), THEN SCREW IT TIGHTLY.
- ATTACH 1-1/4X1/4 M.I.P NIPPLE (17) TO THE FLOW CONTROL VALVE (15), THEN TIGHTEN IT UNTIL SMALL GAP IS SHOWN. 18-
- APPLYING 4 TIMES OF TEFLON TAPE ON THE NIPPLE (17) 19 -
- ATTACH 1-1/4X1/4 M.I.P ELBOW (18) TO THE NIPPLE (17). 20-
- 21 -
- TAKING OFF 1 E-CLIP FROM THE KNUCKLE OF THE BOTTOM OF THE CYLINDER. THEN PRESSING OUT THE PIN. ATTACH A SMALL WASHER (13) FOR BOTH SIDES OF THE BEARING THROUGH THE PIN, THEN INSERT BACK THE E-CLIP ON THE KNUCKLE. 22-
- ATTACH THE BIMBA CYLINDER (14) TO THE MOUNTING BRACKET (5). MAKE SURE THE ELBOW IS FACING LEFT OF YOU, AND THE KNUCKLE IS NOT 23 -TOUCHING THE CAM AUTO-POSITIONER.

ITEM	PART #	DESCRIPTIONS	QTY
1	4115758	MOTOR 1/2	1
2	4118349	CONNECTOR, CONTACT	3
3	4118346	CONNECTOR, PLUG	1
4	1062562.3	BRACKET MOTOR	1
5	1067644.3	MOUNTING BRACKET	1
6	1067647.3	CAM, AUTOPOSITIONER	1
7	1067811.1	SENSOR, OPTICAL	1
8	1067631.1	SHAFT FLANGE	1
9	1067633.3	WHEEL SHAFT	1
10	1067642.1	PHOTO SHELL	1
11	1062608.3	MOTOR KEY	1
12	4117750	BEARING SIK-7	1
13	4117755	WASHER 5710-56-10	2
14	1068266.1	BIMBA CYLINDER	1
15	4117745	FLOW CONTROL VALVE	1
16	4114082	NIPPLE CLOSE B-20N	1
17	4119301	NIPPLE	1
18	4119123	FITTING, ELBOW	1
19	4117725	VASISTOR, 150 AC	1
20		E-CLIPS	2
21	6X32	FLAT WASHER	4
22&25	8X32X1/2	SET SCREW	2
23&33	1/4X20	HEX NUT	8
24&34&3		SPLIT WASHER	12
26	8X32X1	FLAT SCREW	4
27	1/4X20X1/2	SOCKET HEAD SCREW	2
36	1/4	FLAT WASHER	4
30	6X32X1/2	ROUND HEAD SCREW	2
31	3/8X1	HEX HEAD SCREW	4
32	3/8	SPLIT WASHER	4
35	1/4X20X3/4	HEX HEAD SCREW	4
37&40	6X32	STAR WASHER	4
38	6X32	HEX NUT	2

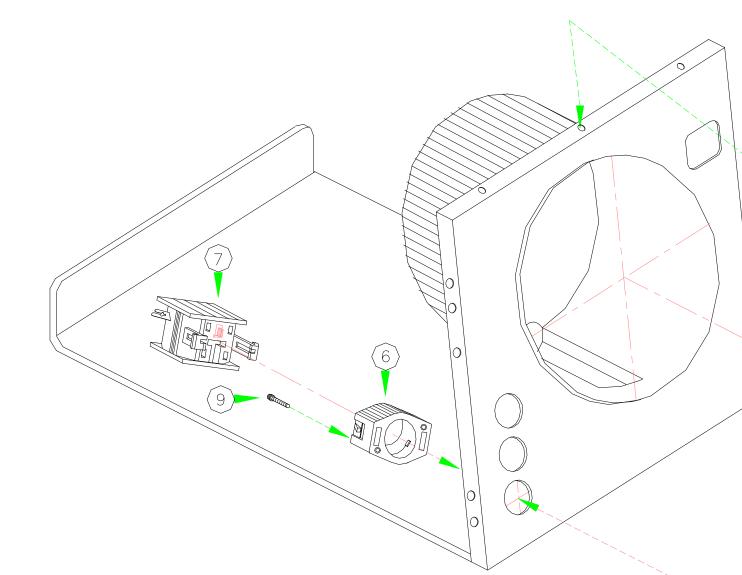
MOTOR ASSEMBLY 1600-55 M (Only)

9300152.1

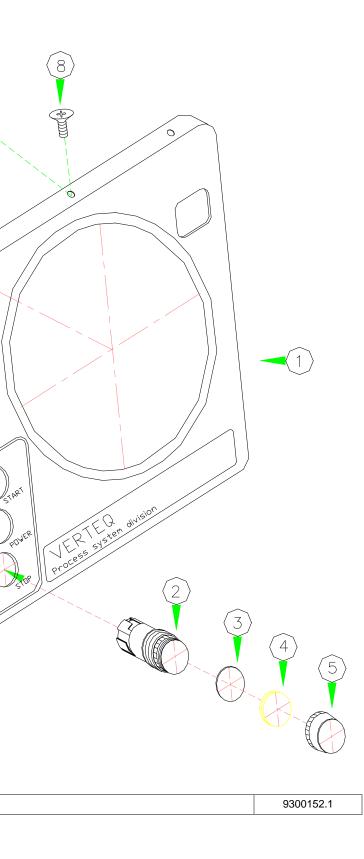

MOTOR ASSEMBLY INSTRUCTIONS and PARTS LISTS 1600-55 M (Only)

- 1— ATTACH MOTOR (1) TO THE BRACKET MOTOR (4) USING 4-HEX HEAD SCREWS 3/8X1 (29), 4-SPLIT WASHERS 3/8 (30) (FRONT OF MOTOR). USING 4-HEX HEAD SCREWS 1/4X20X3/4 (13), 4-FLAT WASHERS 1/4 (14), 4-SPLIT WASHERS 1/4 (16), AND 4-HEX NUTS 1/4 (15), MOUNT THROUGH THE BOTTOM OF BRACKET MOTOR.
- ATTACH MOUNTING BRACKET (5) TO THE REAR MOTOR (1) USING 4-HEX NUTS 1/4X20 (17), AND 4-SPLIT WASHERS 1/4 (18). 2-
- ATTACH PCB OPTICAL SENSOR (8) TO THE BOTTOM OF MOUNTING BRACKET (5), USING 2-ROUND HEAD SCREWS 6X32X1/2 (19), 2-FLAT WASHERS 6X32 3– (21), 2-SPECIAL WASHER(33) UNDERNEATH OF OPTICAL BOARD, AND 2-SPLIT WASHERS 6X32 (18).
- ATTACH LOCATOR (9) TO THE MOTOR (1), USING 1-KEY MOTOR (10) AND 1-SET SCREW 8X32X1/2 (22). 4-
- USING THE TEFLON TAPE TO WRAP AROUND THE THREADS OF ELBOW 1/8X1/4T (11). 5-
- ATTACH ELBOW 1/8X1/4T (11) TO THE CYLINDER ASSEMBLY AIR (7). 6-
- 7-ATTACH CYLYNDER ASSEMBLY AIR (7) TO THE BRACKET MOUNTING COVER (6) USING 1-HEX HEAD SCREW 3/8X1 (27), AND 2-SPLIT WASHER 3/8 (28). (ONE FOR EACH SIDE). MAKE SURE 2-PINS OF THE BRACKET MOUNTING COVER (6) IS LOCKED IN 2-HOLES OF THE CYLINDER ASSEMBLY AIR (7).
- 8-ATTACH BRACKET MOUNTING COVER & CYLYNDER (6)&(7) TO THE BRACKET MOUNTING (5) USING 4-HEX HEAD SCREWS 1/4X20X3/4 (25), AND 4-SPLIT WASHERS 1/4 (26).
- USING CRIMPER TOOL TO CONNECT 3-PINS CONNECTOR CONTACT TO THE MOTOR AC POWER WIRES (BLACK, WHITE, AND GREEN/YELLOW). 9-
- ATTACH 3-PINS (2) TO THE CONNECTOR PLUG (3). MAKE SURE BLACK WIRE GO TO PIN #1 OF CONNECTOR. 10-

(SEE DRAWING FOR RELATION POSITIONS)


ITEM	PART #	DESCRIPTION	QTY
1	4115758	MOTOR 1/2	1
2	4118349	CONNECTOR, CONTACT	3
3	4118346	CONNECTOR, PLUG	1
4	1062562.3	BRACKET MOTOR	1
5	1065307.3	MOUNTING BRACKET	1
6	1065308.3	BRACKET MOUNTING COVER	1
7	1070027.1	CYLYNDER ASSY., AIR	1
8	1067811.1	SENSOR, OPTICAL	1
9	1065749.1	LOCATOR 1600-3	1
10	1062608.3	KEY, MOTOR	1
11	4118941	ELBOWL 1/8X1/4	1
12	4117725	VASISTOR, 150 VAC	1
13&25	1/4X20X3/4	HEX HEAD SCREW	8
16&24&32	1/4	SPLIT WASHER	12
15&23	1/4X20	HEX NUT	8
16&26	1/4	SPLIT WASHER	8
17	6X32	HEX NUT	2
18&32	6X32	STAR WASHER	4
19	6X32X1/2	ROUND HEAD SCREW	2
21	6X32	FLAT WASHER	2
22	8X32X1/2	SET SCREW	1
26	8X32X1	FLAT SCREW	4
27&29	3/8X1	HEX HEAD SCREW	5
28&30	3/8	SPLIT WASHER	6
33	6x	SPECIAL WASHER	2

SEAL PLATE ASSEMBLY and INSTRUCTIONS



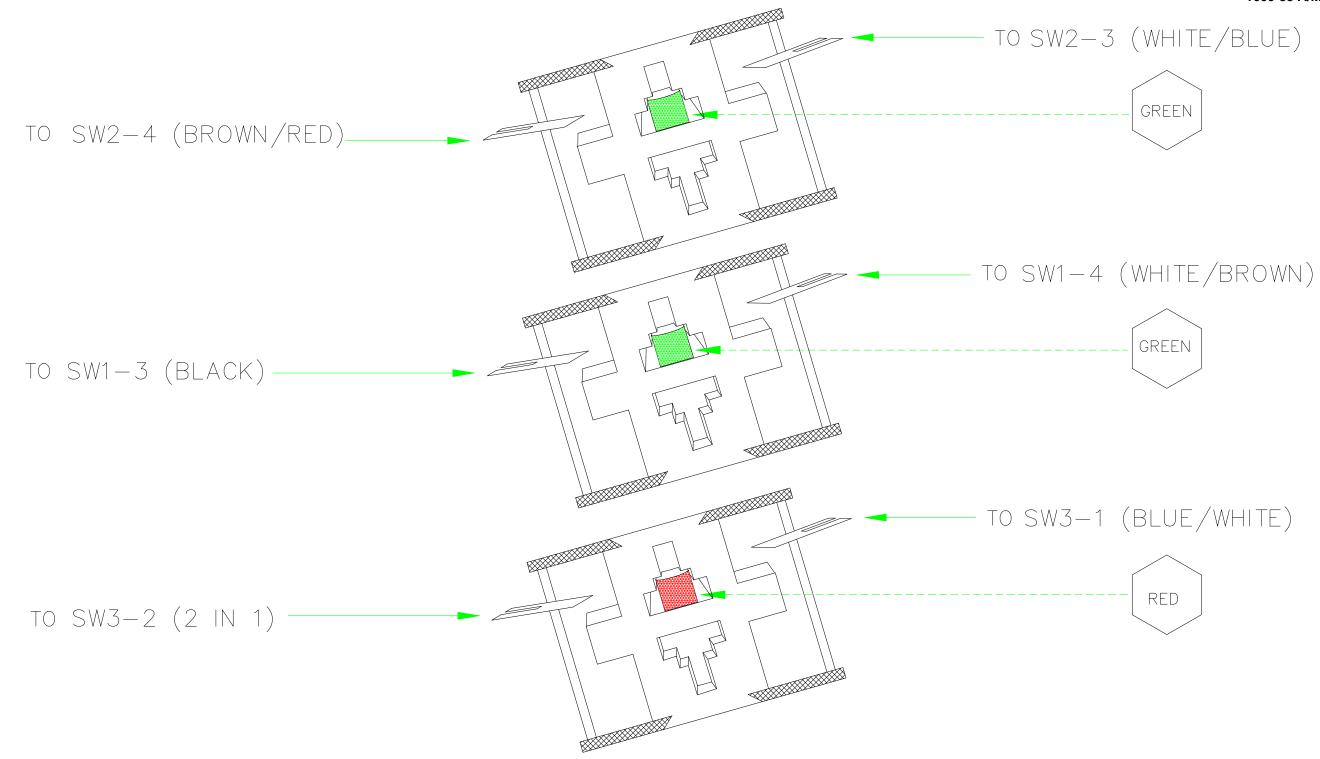
DESCRIPTION	QTY
BOWL, 1600-55	1
SEAL, PLATE MINI	1
RING_0, 2-228	1
RING_0, 2-248	1
TRUSS HEAD SCREW	8
FLAT WASHER	8

ITEM	PART #	DESCRIPTIONS	QTY
1	1671667.9	FRONT PANEL	1
2	4115777	ACTUATOR, SWITCH (START/POWER)	2
2	4115778	ACTUATOR, SWITCH (STOP)	1
3	4114328	SWITCH LENS	3
4	4114217	lens cover (red)	1
4	4114218	LENS COVER (GREEN)	1
4	4114219	LENS COVER (YELLOW)	1
6	4116783	BOOT SWTCHES	1
1	4115779	MOUNTING FLANGE SWITCHES	3
7	4115781	CONTACT BLOCK SWITCHES (GREEN)	2
7	4115782	CONTACT BLOCK SWITCH. (RED)	1
8	6X32X1/4	FLAT HEAD SCREWS	9
9	N/A	MOUNTING FLANGE SWITCH SCREWS	2

FRONT PANEL ASSEMBLY and INSTRUCTIONS 1 1600-55 A/M

0

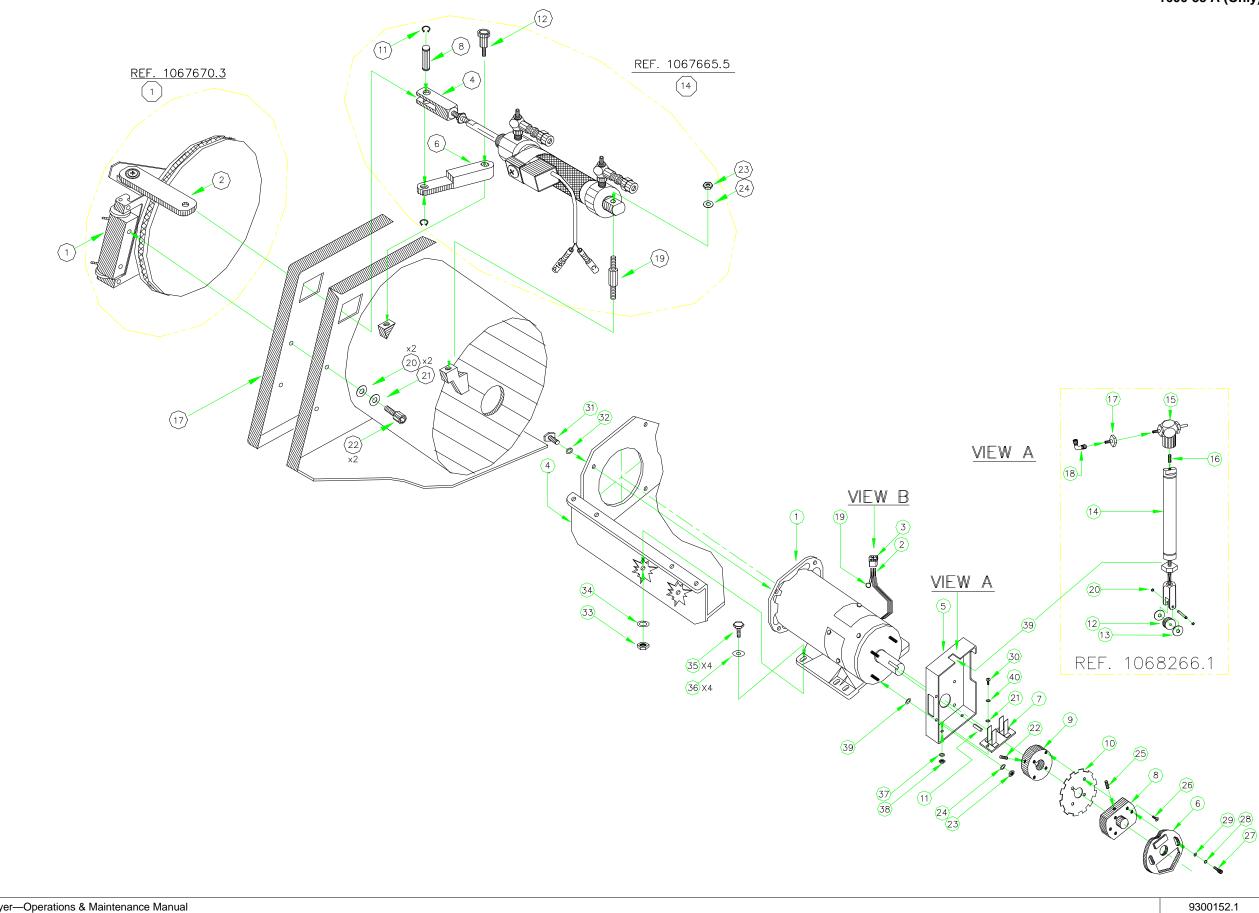
0

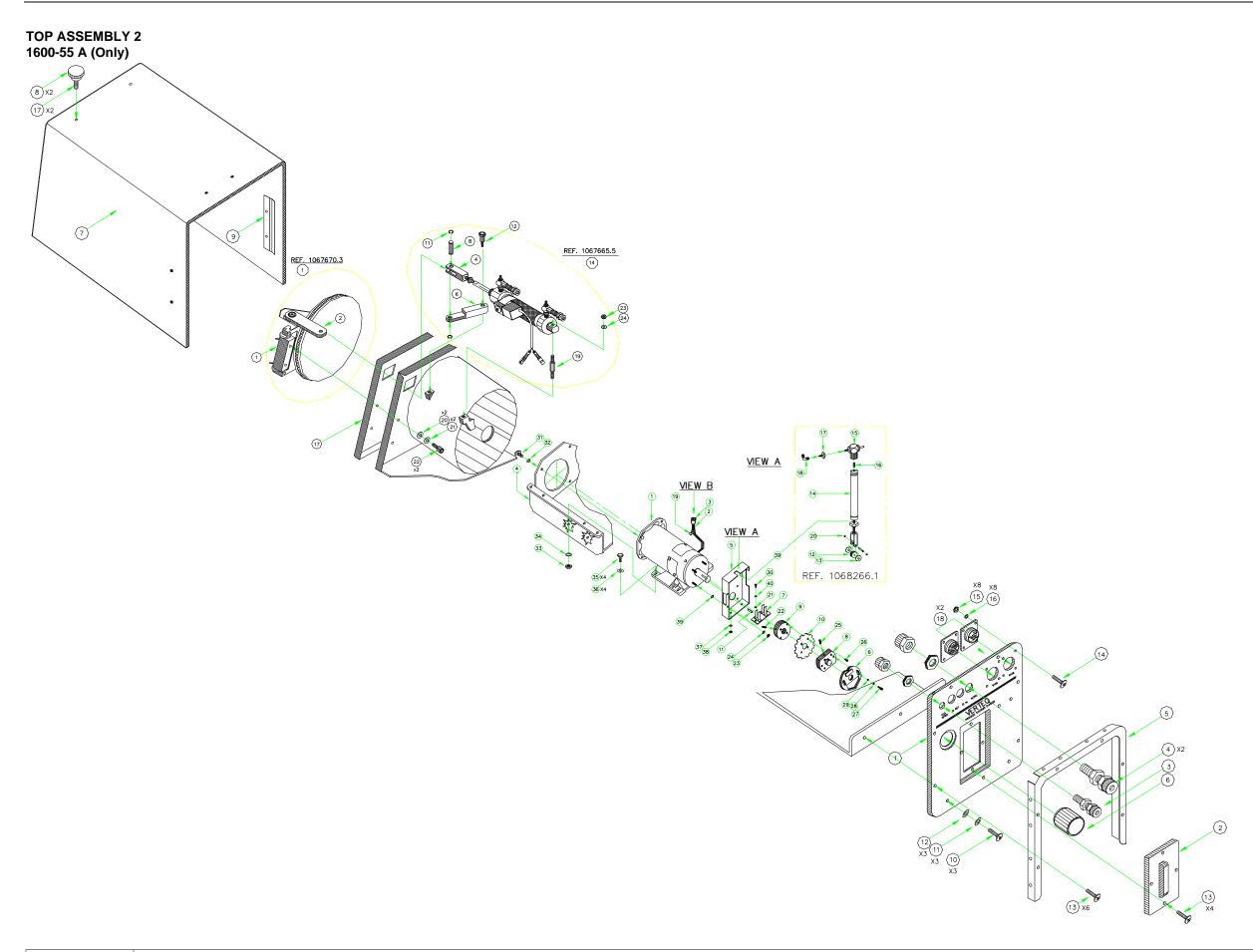

0

0

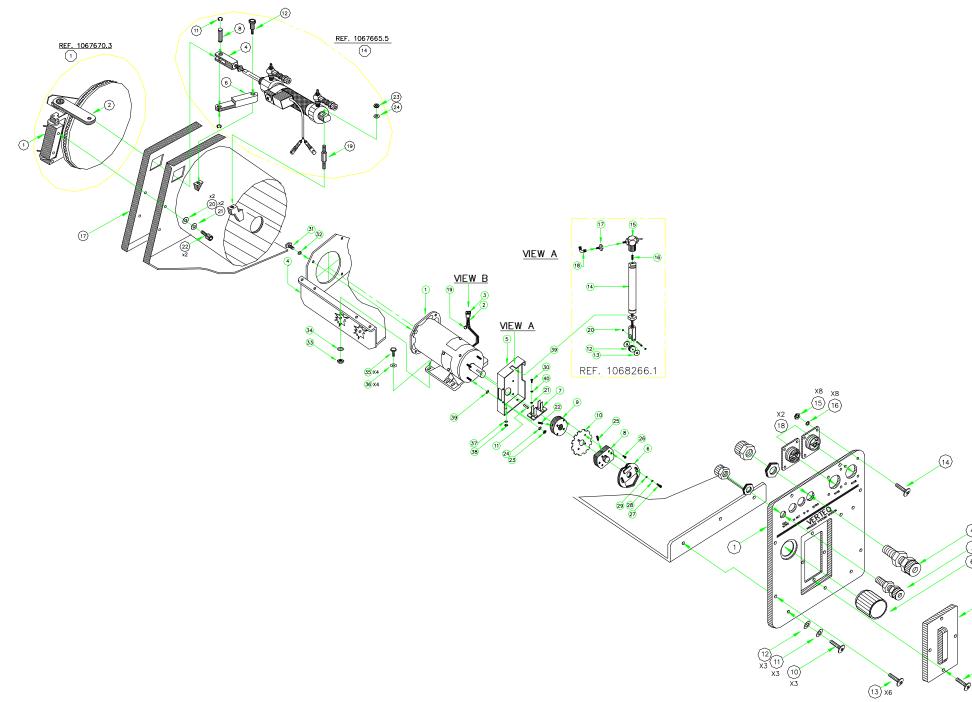
FRONT PANEL ASSEMBLY and INSTRUCTIONS 2 1600-55 A/M

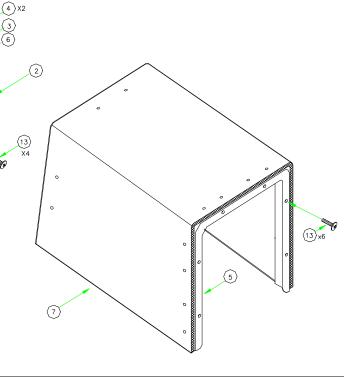
START, POWER, STOP SWITCHES ASSEMBLY INSTRUCTIONS

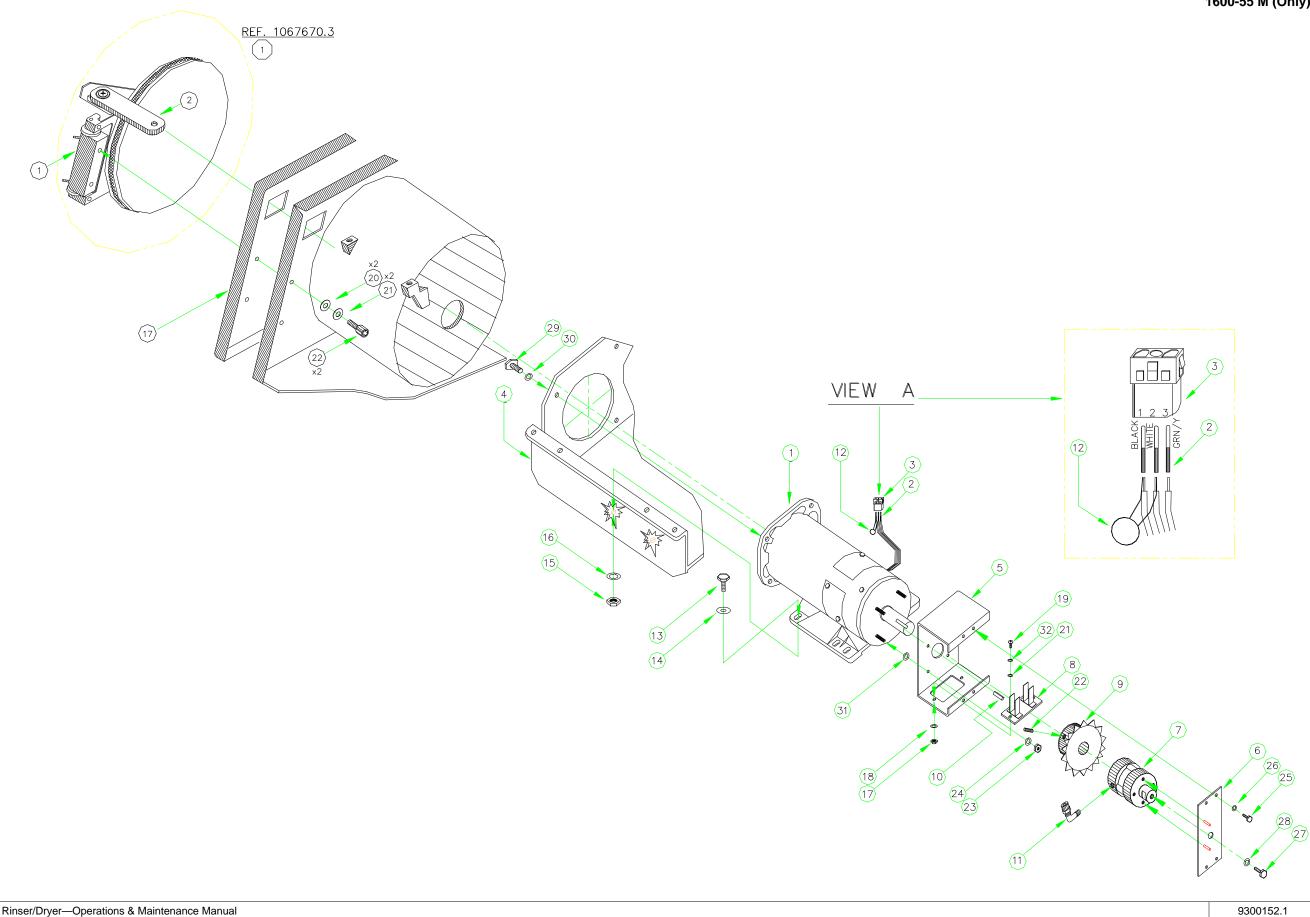

- ATTACH FRONT PANEL (1) TO THE 1600 BASE. USING 9-6X32X1/4 FLAT HEAD SCREWS (8). 1—
- LEFT HAND HOLD THE MOUNTING FLANGE SWITCH (6) BEHIND THE FRONT PANEL (1). ATTACH 3-START, POWER, AND STOP ACTUATOR SWITCHES (2). 2 -PN# 4115777, AND 4115778 THROUGH THE START, POWER, AND STOP SWITCHES LOCATION ON FRONT PANEL (1). TURN THE ACTUATOR SWITCHES (2) TO CLOCKWISE DIRECTION IN THE MOUNTING FLANGE SWITCHES (6), THEN TIGHTEN 2-SCREWS (9), MAKE SURE IT IS LOCKED AND AGAINST THE FRONT PANEL (1).
- SNAP SWITCH LENS (3) INTO THE START/POWER/STOP ACTUATOR SWTCHES (2). 3–
- HAND TIGHTEN THE 3-COLOR LENS COVER (4) INTO THE ACTUATOR SWITCHES (2). GREEN FOR START, YELLOW FOR POWER, AND RED FOR STOP. 4-
- HAND TIGHTEN THE 3-BOOT SWITCHES (5) INTO THE 3-ACTUATOR SWITCHES (2). 5-
- SNAP 3-CONTACT BLOCK SWITCHES (7) INTO THE MOUNTING FLANGE SWITCHES (6). BE SURE THE PRONGS IS UP. 6-


START/POWER/STOP SWITCHES REAR VIEW

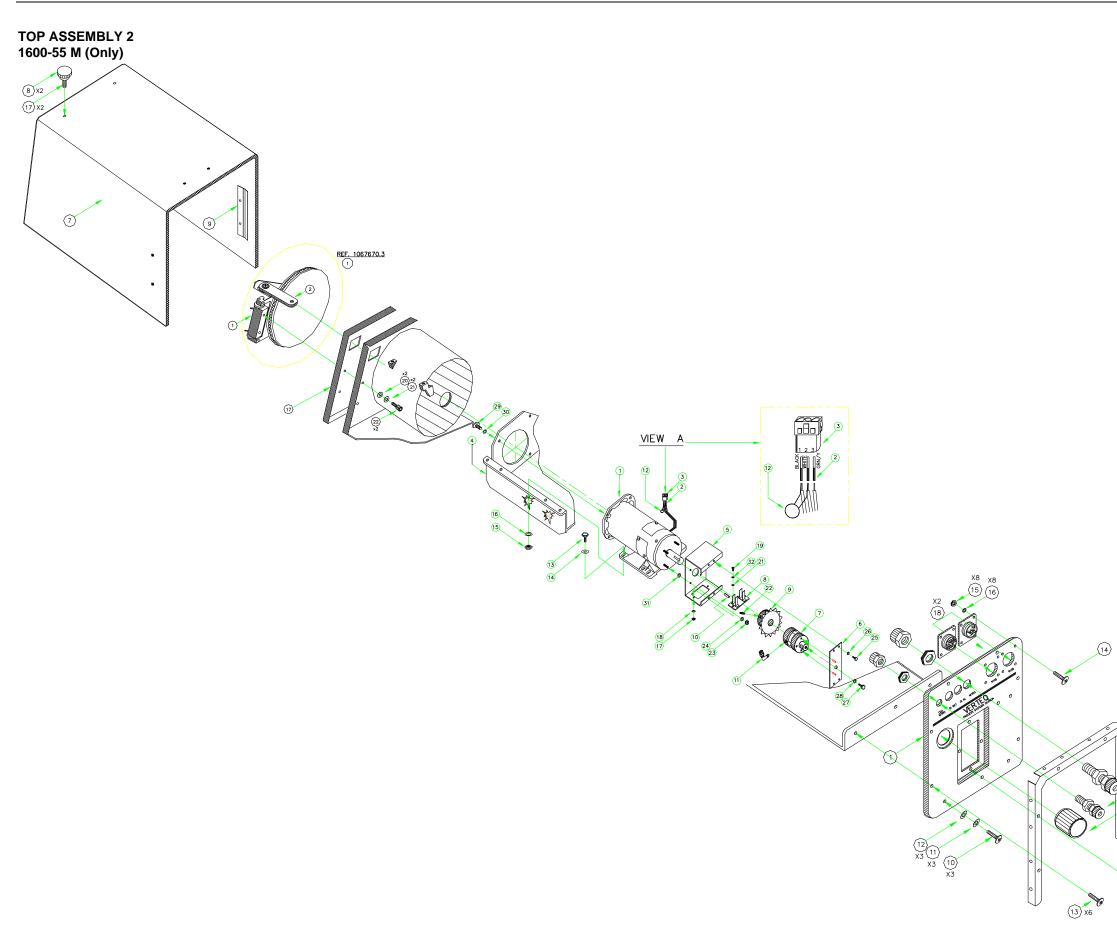
FRONT PANEL ASSEMBLY and INSTRUCTIONS 3 1600-55 A/M



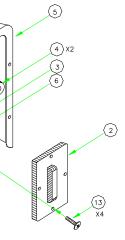

TOP ASSEMBLY 1 1600-55 A (Only)

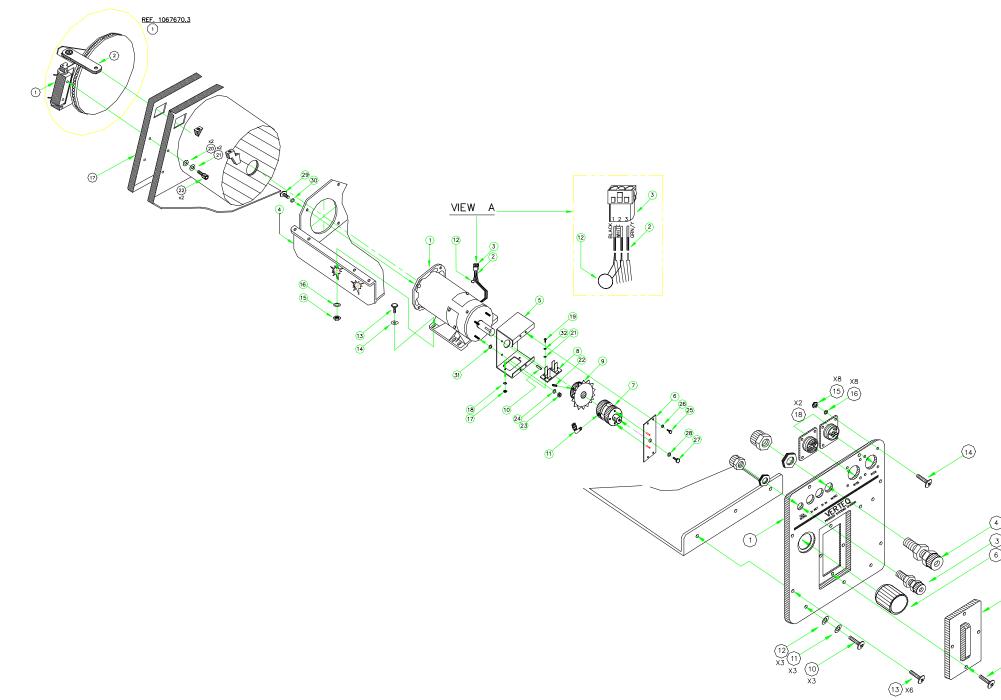


SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual



TOP ASSEMBLY 3 1600-55 A (Only)




TOP ASSEMBLY 1 1600-55 M (Only)

9300152.1

SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

TOP ASSEMBLY 3 1600-55 M (Only)

9300152.1

ITEM	PART #	DESCRIPTIONS	QTY
5	1067643.1	COLAR COVER	1
7	1067654.3	TOP COVER	1
9	1067636.1	CLAMP COVER	3
17	6X32X3/4	FLAT SCREWS	18

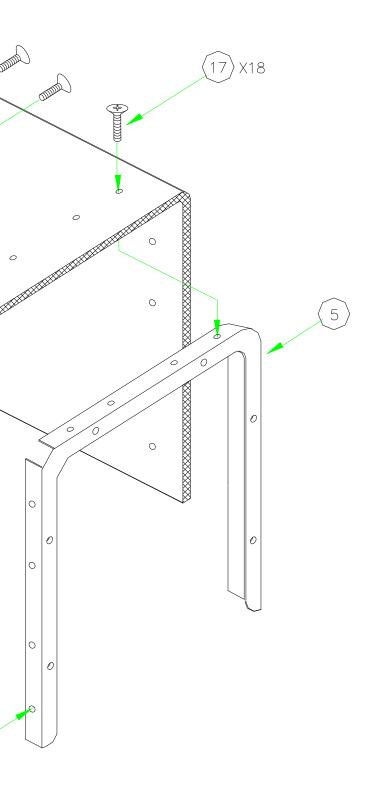
x6

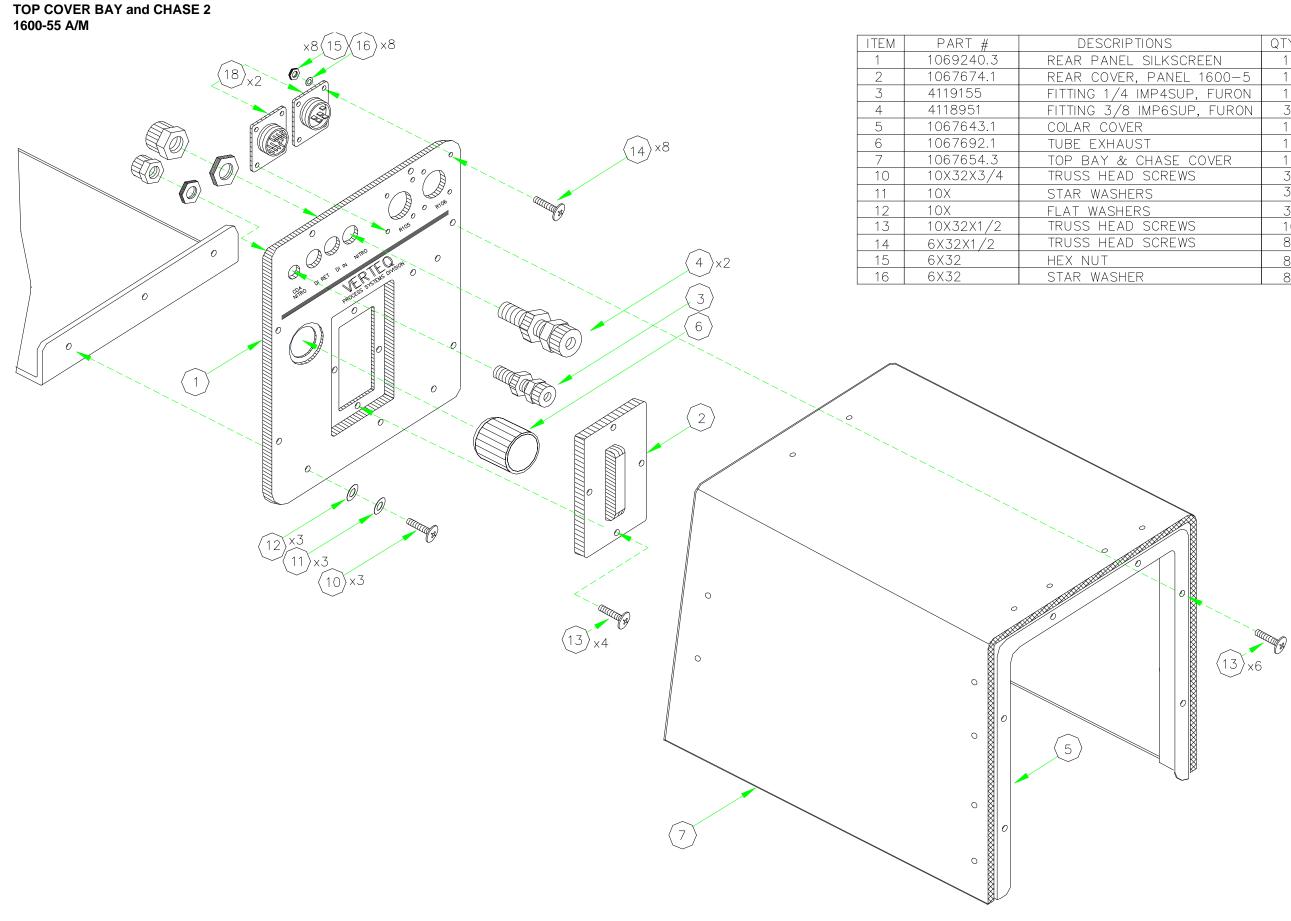
 $\left(9\right)$ X3

INSTRUCTIONS

- 1- ATTACH 3-CLAMP COVERS(9) TO THE FRONT OF TOP COVER(7), USING 6-6X32X3/4 FLAT HEAD SCREWS(17).
- 2- ATTACH COLAR COVER(5) TO THE REAR TOP COVER(7), USING 12-6X32X3/4 FLAT HEAD SCREWS(17).

TOP COVER BAY and CHASE 1 1600-55 A/M

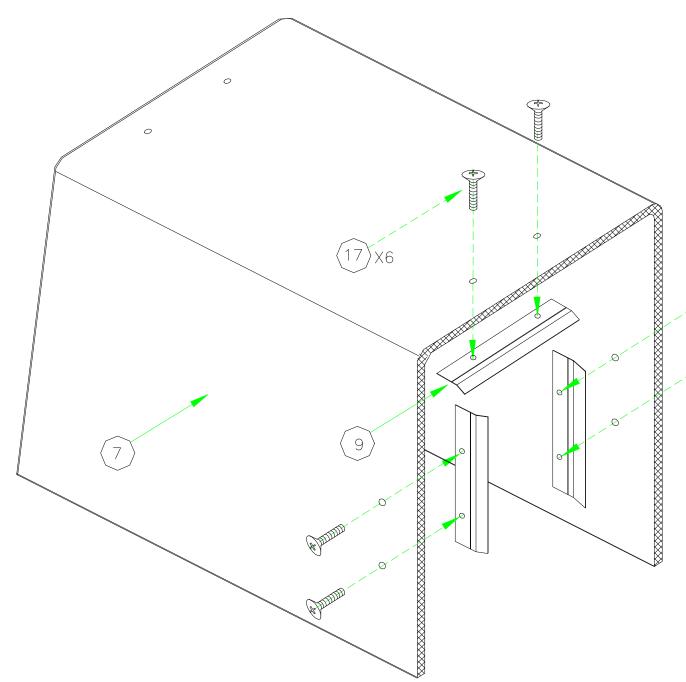

(17) X18


0

XXXXXXXXXXX

0

0



RIPTIONS	QTY
IEL SILKSCREEN	1
/ER, PANEL 1600-5	1
/4 IMP4SUP, FURON	1
/8 IMP6SUP, FURON	3
VER	1
AUST	1
& CHASE COVER	1
AD SCREWS	3
SHERS	3
HERS	3
AD SCREWS	10
AD SCREWS	8
	8
SHER	8

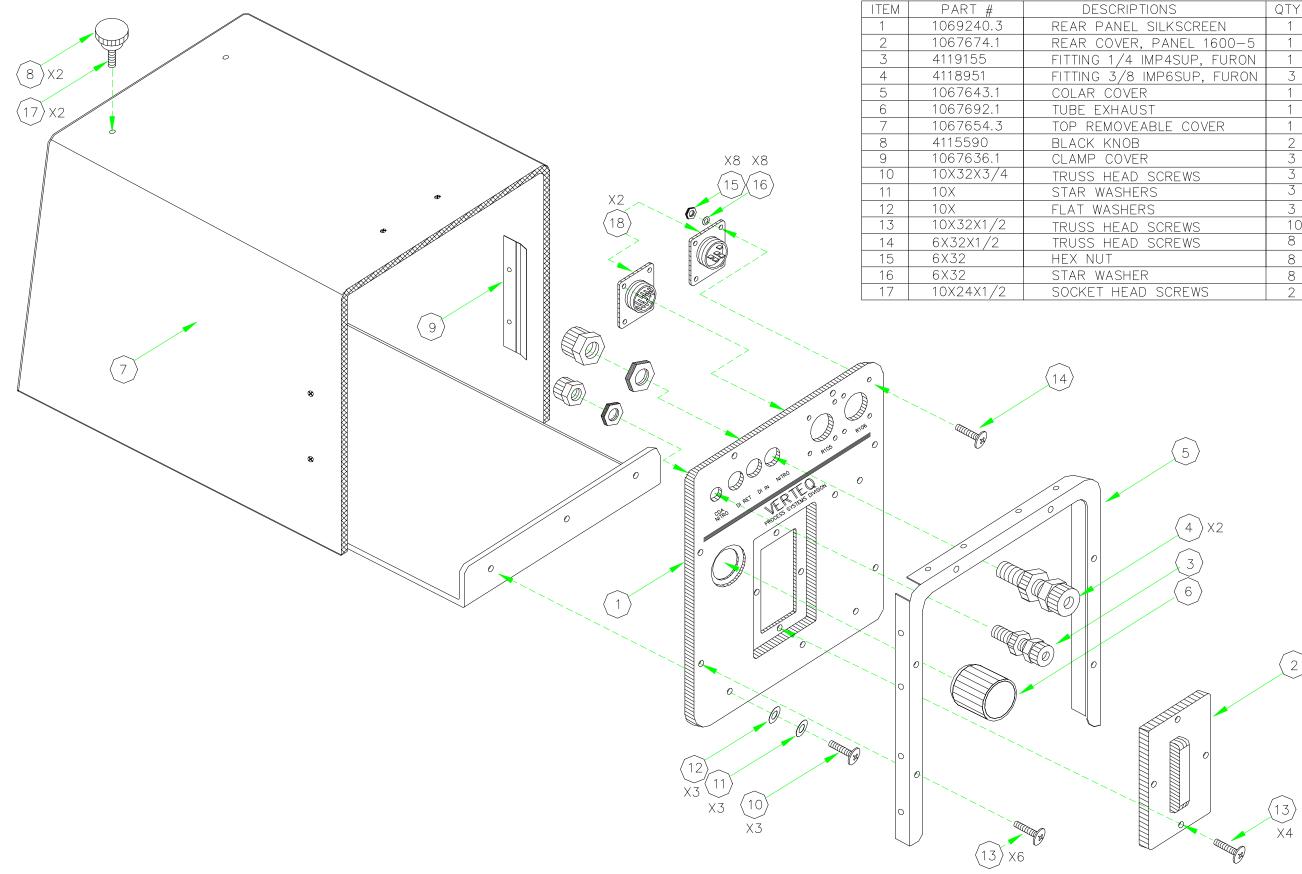
REAR PANEL ASSEMBLY INSTRUCTIONS

- 1- ATTACH REAR PANEL(1) TO THE REAR BASE. USING 3-10X32X3/4 TRUSS HEAD SCREWS(10), 3-10X STAR WASHERS(11), AND 3-10X FLAT WASHERS(12).
- 2- ATTACH 1-1/4 FITTING(3), AND 3-3/8 FITTING(4) TO THE REAR PANEL(1).
- 3- ATTACH 2-FLANGE MOUNT CONNECTORS(18) TO THE REAR PANEL(1), USING 8-6X32X1/2 TRUSS HEAD SCREWS(14), 8-6X STAR WASHERS(16), AND 8-6X32 HEX NUTS(15).
- 4- GLUE THE TUBE EXHAUST(6) TO THE REAR PANEL(1).
- 5- AFTER FINAL Q.C. TEST. SLIDE THE TOP COVER(7) FROM REAR TO FRONT PANEL, MAKE SURE THE CLAMP COVER (9)LOCK IN THE FRONT PANEL, AND SCREW IN 6-10X32X1/2 TRUSS HEAD SCREWS(13).
- 6- ATTACH REAR COVER(2), USING $4-10\times32\times1/2$ TRUSS HEAD SCREWS(13).

TOP COVER BAY and CHASE 3 1600-55 A/M

ITEM	part #	DESCRIPTIONS	QTY
7	1067654.3	TOP COVER	1
9	1067636.1	CLAMP COVER	3
17	6X32X3/4	FLAT SCREWS	18

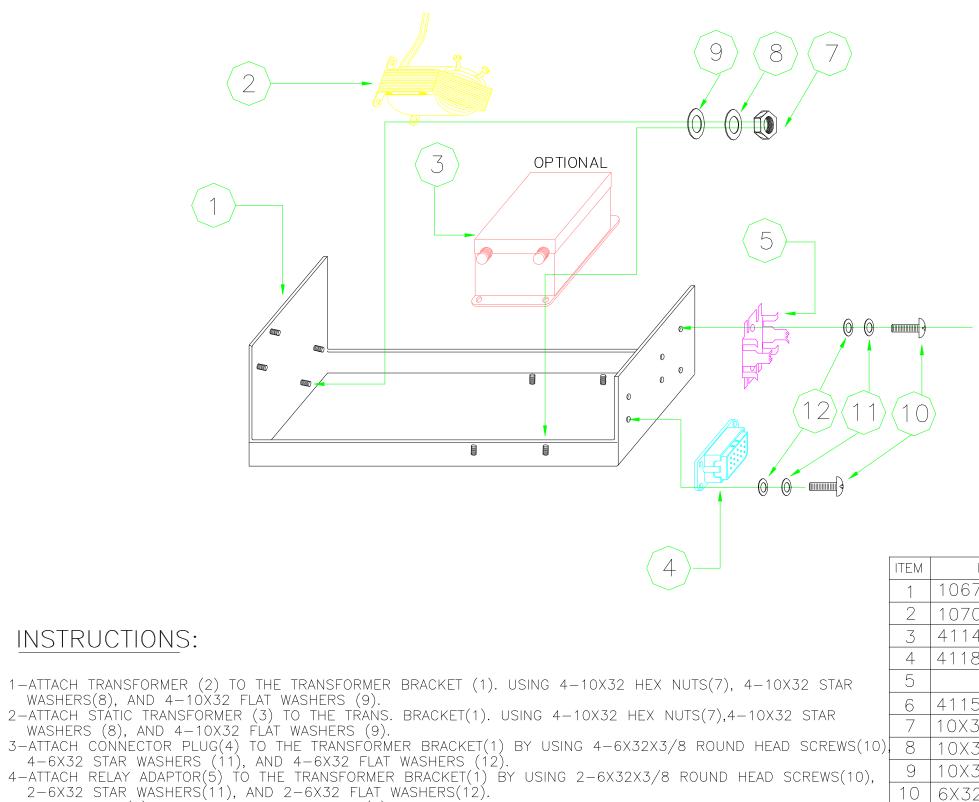
1- ATTACH 3-CLAMP COVERS(9) TO THE REAR OF TOP REMOVEABLE COVER (7), USING 6-6X32X3/4 FLAT HEAD SCREWS(17).


IPB	51
-----	----

9300152.1

TOP COVER FRONT REMOVEABLE 1 1600-55 A/M

TOP COVER FRONT REMOVEABLE 2 1600-55 A/M

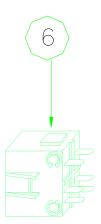

RIPTIONS	QTY
NEL SILKSCREEN	1
VER, PANEL 1600-5	1
/4 IMP4SUP, FURON	1
/8 IMP6SUP, FURON	3
DVER	1
IAUST	1
OVEABLE COVER	1
NOB	2
DVER	2 3 3
EAD SCREWS	3
SHERS	3
SHERS	3
EAD SCREWS	10
EAD SCREWS	8
	8
SHER	8
HEAD SCREWS	2

REAR PANEL ASSEMBLY INSTRUCTIONS

- 1- ATTACH REAR PANEL(1) TO THE REAR BASE. USING 3-10X32X3/4 TRUSS HEAD SCREWS(10), 3-10X STAR WASHERS(11), AND 2-10X FLAT WASHERS(12).
- 2- ATTACH COLAR COVER(5) TO THE REAR PANEL(1). USING 6-10X32X1/2 TRUSS HEAD SCREWS(13).
- 3- ATTACH 1-1/4 FITTING(3), AND 3-3/8 FITTING(4) TO THE REAR PANEL(1).
- 4- ATTACH 2-FLANGE MOUNT CONNECTORS(18) TO THE REAR PANEL(1), USING 8-6X32X1/2 TRUSS HEAD SCREWS(14), 8-6X STAR WASHERS(16), AND 8-6X32 HEX NUTS(15).
- 5- GLUE THE TUBE EXHAUST(6) TO THE REAR PANEL(1).
- 6- AFTER FINAL Q.C. TEST. SLIDE THE TOP COVER(7) FROM FRONT TO REAR PANEL, MAKE SURE THE CLAMP COVER LOCK IN THE COLAR COVER(5), AND SCREW IN 2-10X24X1/2 SOCKET SCREW(17), THEN ATTACH 2-BLACK KNOB (8) ON TOP OF 2-SOCKET SCREWS(8).AFTER FINAL Q.C. TEST.
- 7- ATTACH REAR COVER(2), USING $4-10\times32\times1/2$ TRUSS HEAD SCREWS(13).

TOP COVER FRONT REMOVEABLE 3 1600-55 A/M

9300152.1

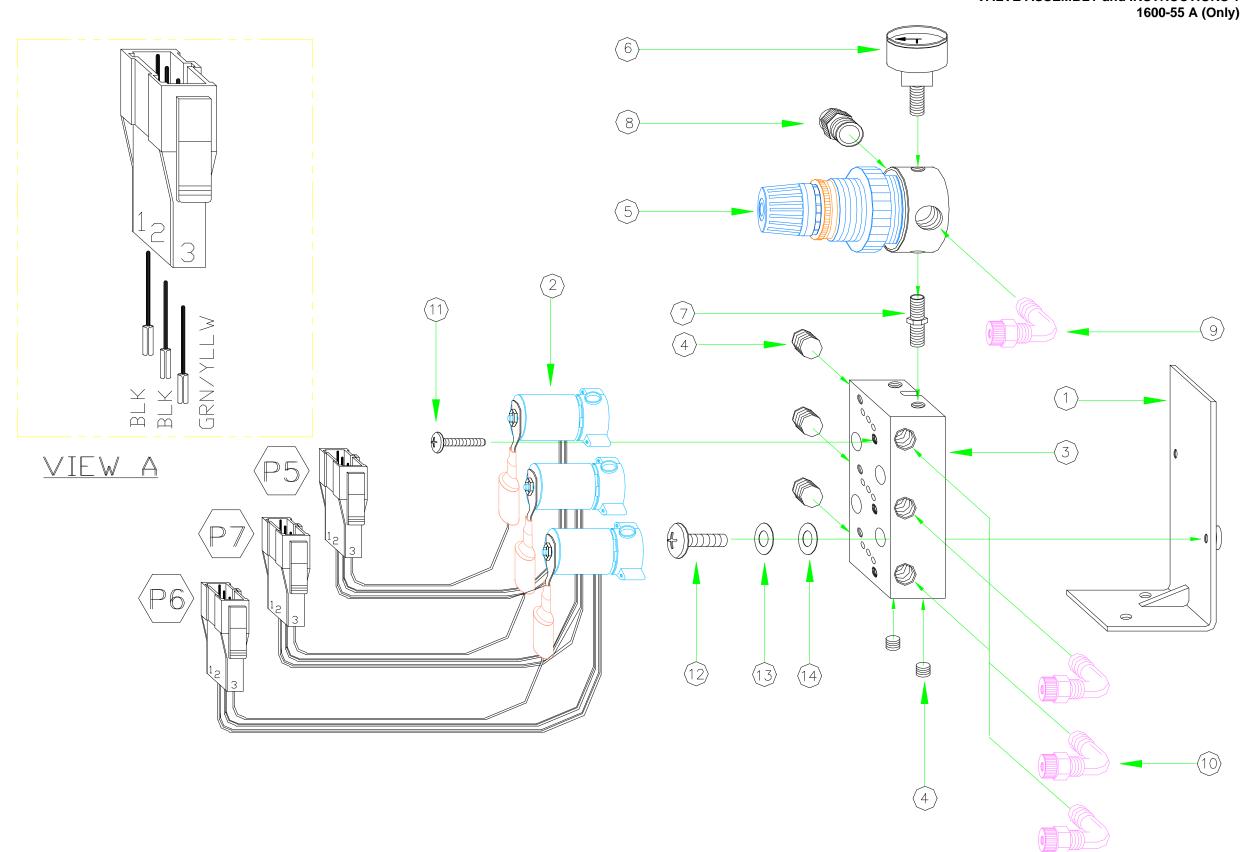


5-SNAP RELAY (6) IN TO THE RELAY ADAPTOR (5).

NOTE: ITEM #3 OPTIONAL

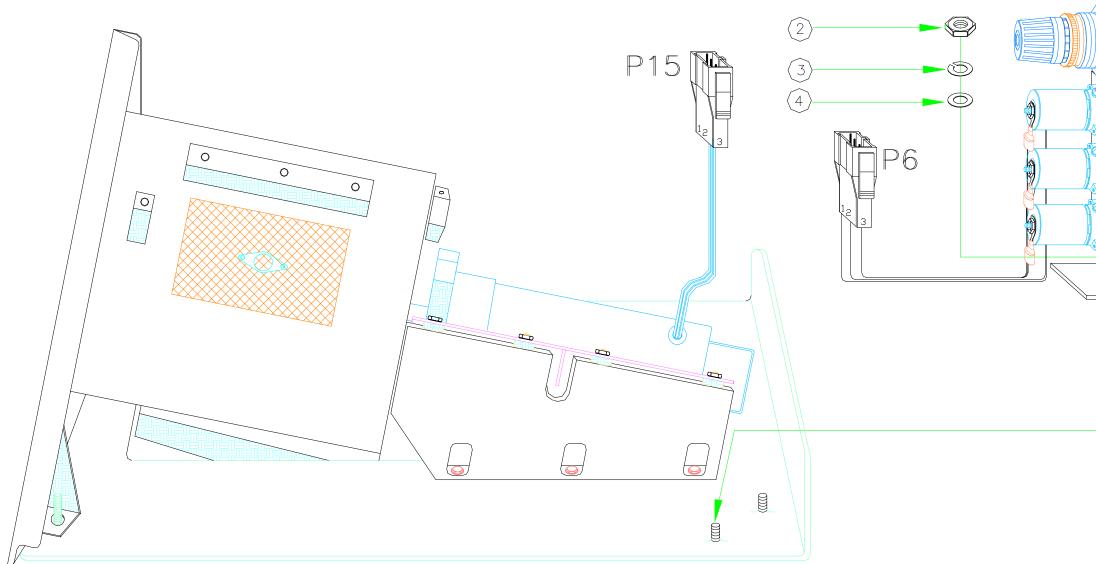
TRANSFORMER ASSEMBLY and INSTRUCTIONS 1600-55 A/M

11


12

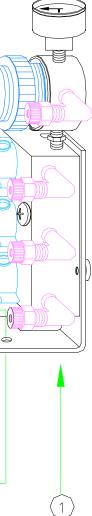
6X3

6X32


DESCRIPTION	QTY
TRANSFORMER BRACKET	1
TRANSFORMER	1
STATIC TRANSFORMER	1
CONNECTOR PLUG	1
RELAY ADAPTOR	1
RELAY	1
HEX NUT	8
STAR WASHER	8
FLAT WASHER	8
ROUND HEAD SCREW	10
STAR WASHER	10
FLAT WASHER	10
	TRANSFORMER BRACKET TRANSFORMER STATIC TRANSFORMER CONNECTOR PLUG RELAY ADAPTOR RELAY HEX NUT STAR WASHER FLAT WASHER ROUND HEAD SCREW STAR WASHER

9300152.1

VALVE ASSEMBLY and INSTRUCTIONS 1


VALVE ASSEMBLY and INSTRUCTIONS 2 1600-55 A (Only)

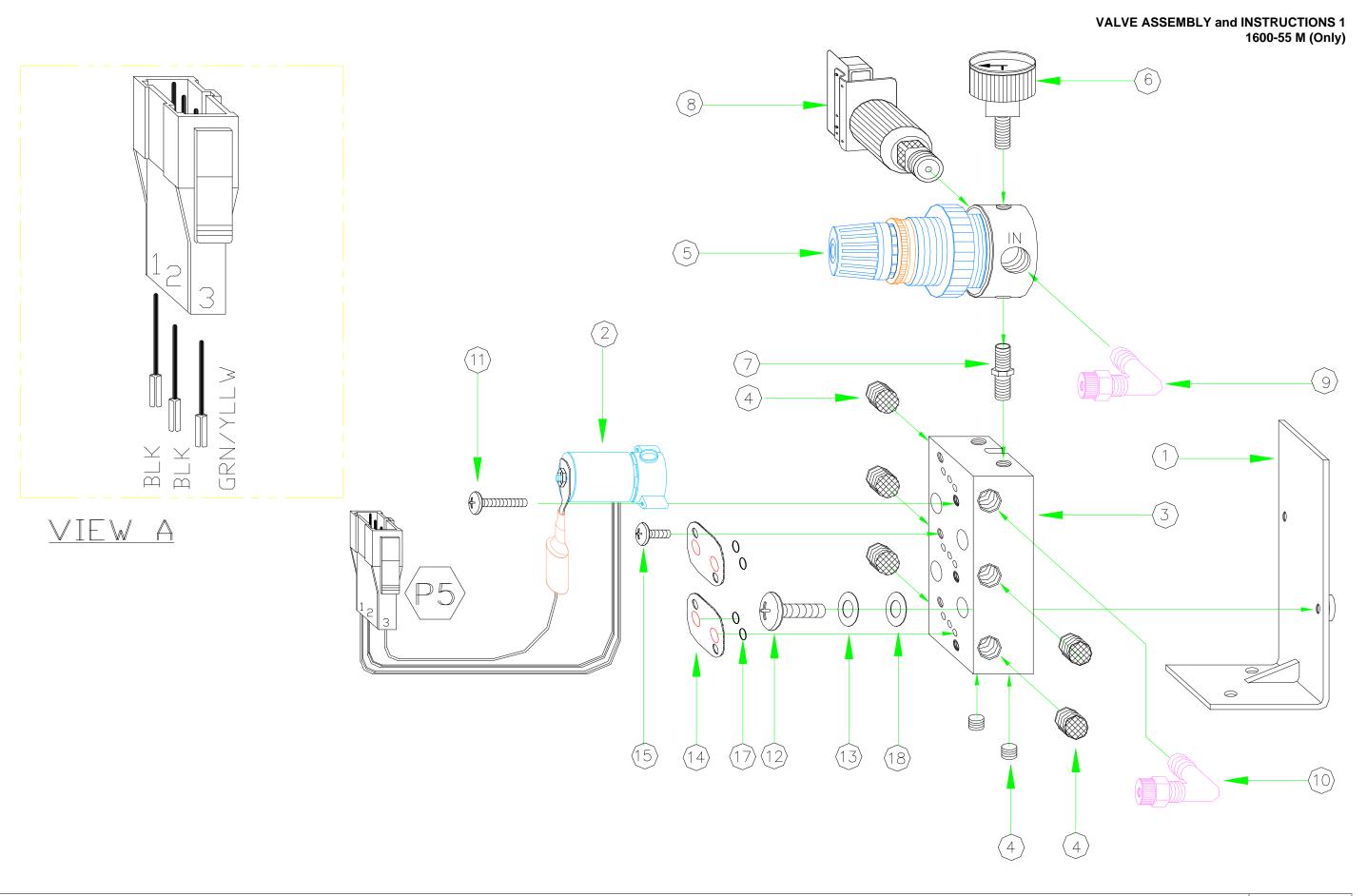
INSTRUCTIONS:

1- MOUNT THE AIR VALVES SET (1) ONTO THE BASE PLATE. USING 2-10X32 HEX NUTS (2), 2-10X32 SPLIT WASHERS (3), AND 2-10X32 FLAT WASHERS (4).

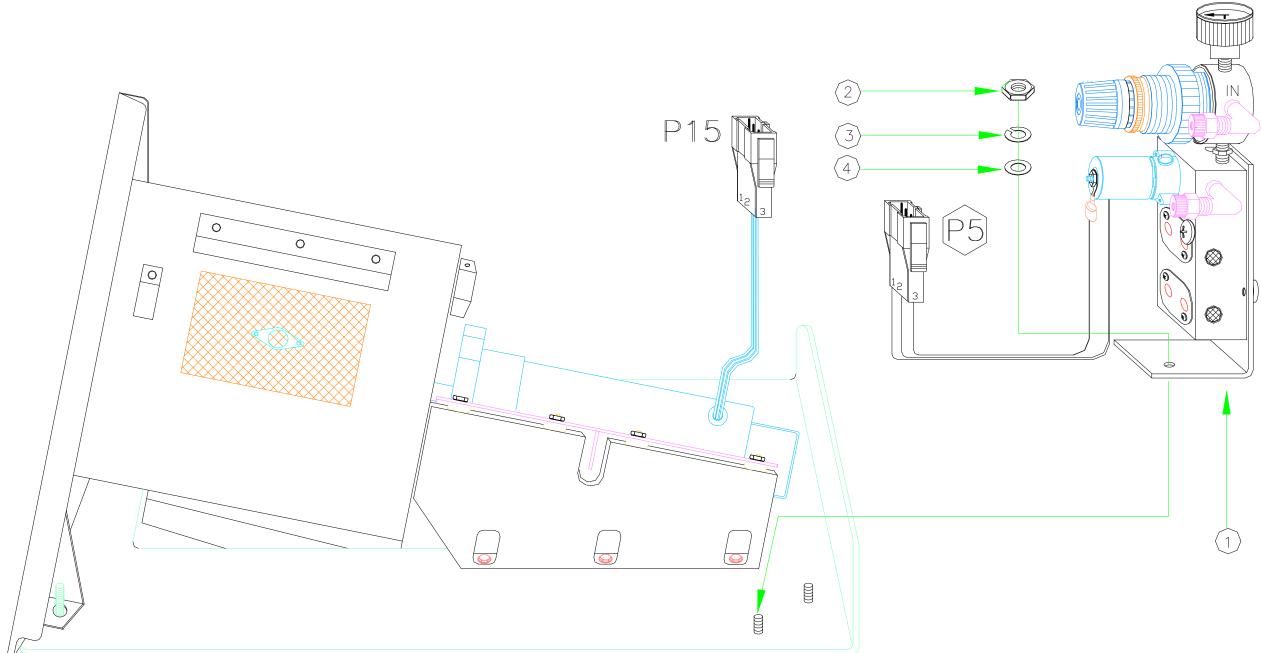
ITEM	part #	DESCRIPTIONS	QTY
1	1067668	AIR VALVES	1 SET
2	10X32	HEX NUT	2
3	10X32	SPLIT WASHERS	2
4	10X32	FLAT WASHERS	2

AIR VALVE ASSEMBLY INTSRUCTIONS:

NOTE: ALL PARTS HAS TO APPLY TEFLON TAPE.


- TURN THE MANIFOLD BASE(3)TO VERTICALY VIEW. 1—
- ATTACH 3-HOLE PLUGS(4) TO THE FAR SIDE, AND 2-HOLE PLUGS(4) TO THE BOTTOM OF MANIFOLD BASE (3). 2-
- ATTACH NIPPLE (7) TO THE TOP, NEAR SIDE OF THE MANIFOLD BASE (3). 3–
- 4- ATTACH REGULATOR (5) TO THE NIPPLE (7).
- 5- ATTACH GAUGE (6) TO THE REGULATOR (5).
- 6- ATTACH 1-HOLE PLUG(8) TO THE FAR SIDE, AND 1-1/4 ELBOW(9) TO [IN] POSITION OF REGULATOR(5).
- 7- ATTACH 3-1/8X1/4 ELBOW (10) TO THE NEAR SIDE OF MANIFOLD BASE (3).
- MOUNT THE MANIFOLD BASE(3) TO THE VALVE BRACKET(1). USING 2-8X32X1 ROUND HEAD SCREWS(12), 2-8X32 STAR WASHERS(13) 8— AND 2-8X32 FLAT WASHERS (14).
- 9- ATTACH 3-SKINNER VALVES (2) TO THE MANIFOLD BASE (3), USING 6-6X32X1/2 ROUND HEAD SCREWS (11). (SEE DRAWING FOR MORE RELATION POSITIONS).

ITEM	PART #	DESCRIPTIONS
1	1067663.3	BRACKET, VALVE
2	1070210.1	VALVE, SKINNER
3	4116299	MANIFOLD, BASE 3 STATIONS
4	4116301	MANIFOLD KIT
5	4114273	REGULATOR 1/4
6	4116212	GAUGE, 0-60 PSI
7	4114082	NIPPLE CLOSE B-20 1/8 PIPEBR.
8	4118192	PLUG, PIPE 1/4
9	4118943	ELBOW MALE 1/4x1/4
10	4118941	ELBOW, IMP42EAM 1/8X1/4T
11	6X32X1/2	ROUND HEAD SCREW
12	8X32X1/2	ROUND HEAD SCREW
13	8X32	STAR WASHER
14	8X32	FLAT WASHER


P5	$\mathbb{P}6$	$\mathbb{P}\mathbb{Z}$
1=BLACK	1=BLACK	1=BLACK
2=BLACK	2=BLACK	2=BLACK
3=GREEN/YELLOW	3=GREEN/YELLOW	3=GREEN/YELLOW

VALVE ASSEMBLY and INSTRUCTIONS 3 1600-55 A (Only)

QTY	
1	
3	
1	
1 SET	
1	
2	
1	
1	
1	
3 6 2 2	
6	
2	
2	
2	

VALVE ASSEMBLY and INSTRUCTIONS 2 1600-55 M (Only)

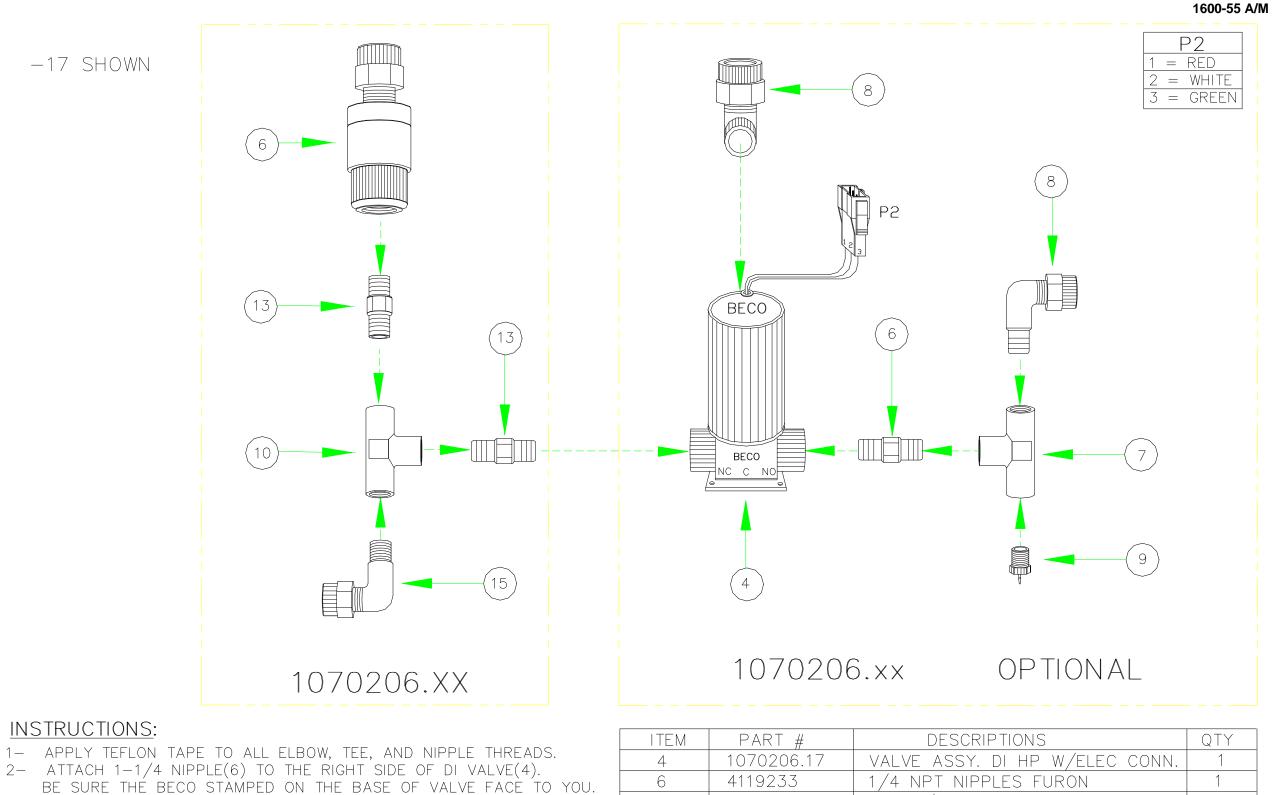
INSTRUCTIONS:

1- MOUNT THE AIR VALVES SET (1) ONTO THE BASE PLATE. USING 2-10X32 HEX NUTS (2), 2-10X32 SPLIT WASHERS (3), AND 2-10X32 FLAT WASHERS (4).

ITEM	part #	DESCRIPTIONS	QTY
1	1067668	AIR VALVES	1 SET
2	10X32	HEX NUT	2
3	10X32	SPLIT WASHERS	2
4	10X32	FLAT WASHERS	2

AIR VALVE ASSEMBLY INSTRUCTIONS:

NOTE: ALL PARTS HAS TO APPLY TEFLON TAPE.


- TURN THE MANIFOLD BASE(3)TO VERTICALY VIEW. 1—
- ATTACH 3-HOLE PLUGS(4) TO THE FAR SIDE, 2-HOLE PLUGS TO THE NEAR SIDE, AND 2-HOLE PLUGS(4) TO THE BOTTOM OF MANIFOLD 2 -BASE (3).
- 3-ATTACH NIPPLE (7) TO THE TOP, NEAR SIDE OF THE MANIFOLD BASE (3).
- ATTACH REGULATOR (5) TO THE NIPPLE (7). 4—
- ATTACH GAUGE(6) TO THE TOP OF REGULATOR(5), THE PRESSURE SWITCH(8) TO THE FAR SIDE OF REGULATOR(5), AND THE ELBOW(9) 5-TO (IN) POSITION OF REGULATOR(5).
- ATTACH 1-1/8X1/4 ELBOW (10) TO THE BOTTOM, NEAR SIDE OF MANIFOLD BASE (3). 6-
- MOUNT THE MANIFOLD BASE(3) TO THE VALVE BRACKET(1). USING 2-8X32X1 ROUND HEAD SCREWS(12), 2-8X32 STAR WASHERS(13) 7— AND 2-8X32 FLAT WASHERS (14).
- ATTACH 1-SKINNER VALVES (2) TO THE TOP ONE OF THE MANIFOLD BASE (1), USING 2-6X32X1/2 ROUND HEAD SCREWS (11). 8-

ATTACH 4-SKINNER O-RINGS, AND 2-SKINNER BLANK KIT COVERS(14) INTO THE MIDLE AND BOTTOM STATIONS OF MANIFOLD BASE(3). 9— USING 4-6X32X1/4 ROUND HEAD SCREWS(15). (SEE DRAWING FOR MORE RELATION POSITIONS).

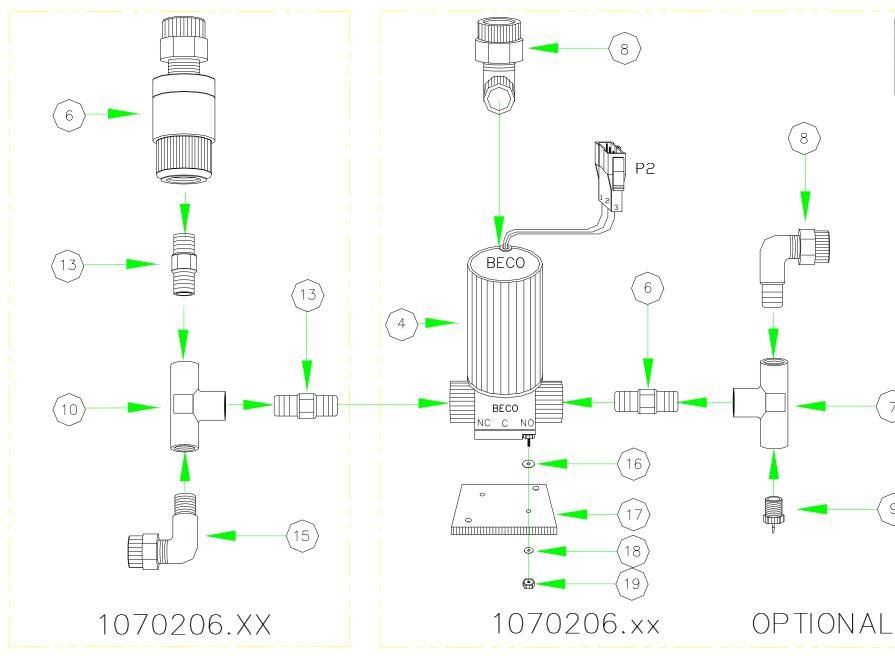
P5
1=BLACK 2=BLACK 3=GREEN/YELLOW

ITEM	PART #	DESCRIPTIONS	QTY
1	1067663.3	BRACKET, VALVE	1
2	1070210.1	VALVE, SKINNER	1
3	4116299	MANIFOLD, BASE 3 STATIONS	1
4	4116301	MANIFOLD KIT	1 SET
5	4114273	REGULATOR 1/4	1
6	4116212	GAUGE, 0-60 PSI	2
7	4119234	NIPPLE CLOSE $B-20$ 1/8 PIPEBR.	1
8	4114327	PRESSURE SWICTH J54S-24-9711	1
9	4118943	ELBOW 1/4 X 1/4	1
10	4118941	ELBOWL, IMP42EAM 1/8X1/4T	1
11	6X32X1/2	ROOUND HEAD SCREW	2
12	8X32X1/2	ROUND HEAD SCREW	2
13	8X32	STAR WASHER	2
14	4116528	SKINNER BLANK KIT (WITH O-RINGS)	2
15	6X32X1/4	ROUND HEAD SCREW	4
16	8X32	FLAT WASHERS	2
17	4116528	O-RING(COME WITH SKINNER BLANK KIT)	4

VALVE ASSEMBLY and INSTRUCTIONS 3 1600-55 M (Only)

- 3- ATTACH 1-1/4 NPT ADAPTOR(9), AND 1-3/8X1/4 ELBOW(8) TO EACH SIDE OF THE 1/4 NPT TEE(7).
- 4- ATTACH ASSY. TEE(7) TO THE NIPPLE(6). BE SURE THE NIPLE FACE TO GROUND.

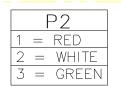
ITEM	PART #	DESCRIPTIONS	QTY
4	1070206.17	VALVE ASSY. DI HP W/ELEC CONN.	1
6	4119233	1/4 NPT NIPPLES FURON	1
7	4119234	TEE, 1/4 NPT FURON MPF4T	1
8	4119732	FITTING 3/8X 1/4P	2
9	4114709	ADAPTOR, 1/4 NPT, PLASTIC	1
4	1/4X20	FLAT SCREW	3


HIGH PRESSURE DI VALVE ASSEMBLY and INSTRUCTIONS 2

SuperClean 1600-55 A/M Rinser/Dryer—Operations & Maintenance Manual

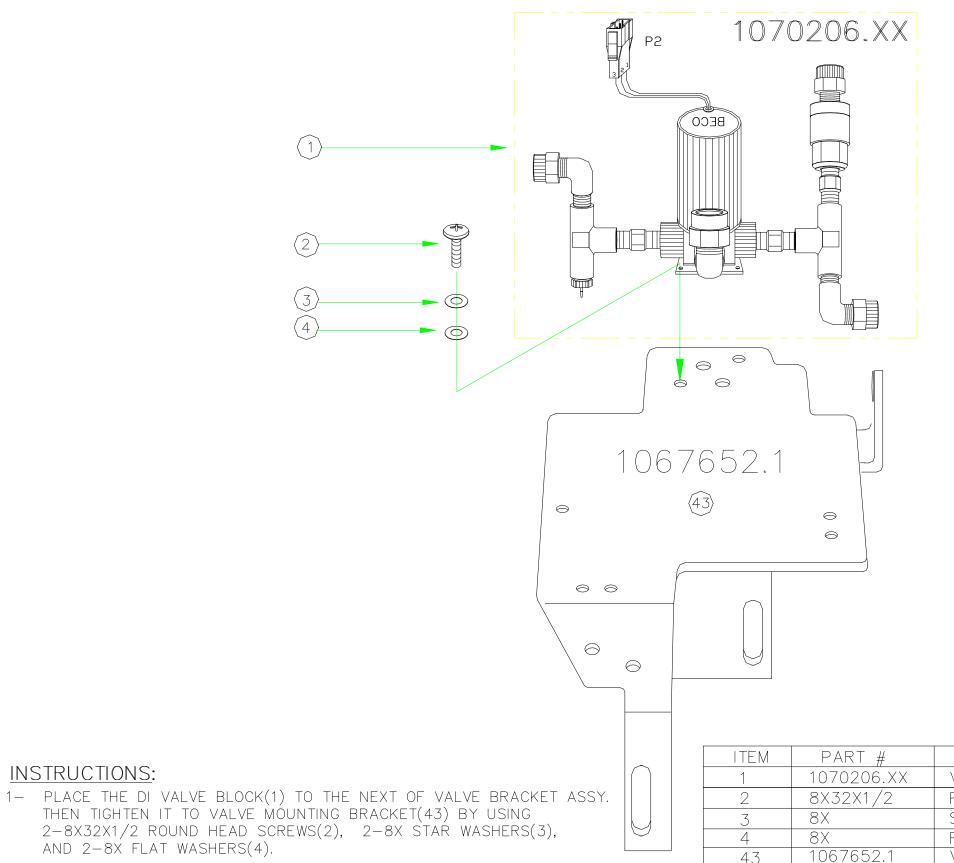
HIGH PRESSURE DI VALVE ASSEMBLY and INSTRUCTIONS 1

1600-55 A/M


-15 SHOWN

INSTRUCTIONS:

- 1- APPLY TEFLON TAPE TO ALL ELBOW, TEE, AND NIPPLE THREADS.
- 2- ATTACH 1-1/4 NIPPLE(6) TO THE RIGHT SIDE OF DI VALVE(4). BE SURE THE BECO STAMPED ON THE BASE OF VALVE FACE TO YOU.
- 3- ATTACH 1-1/4 NPT ADAPTOR(9), AND 1-3/8X1/4 ELBOW(8) TO EACH SIDE OF THE 1/4 NPT TEE(7).
- 4- ATTACH ASSY. TEE(7) TO THE NIPPLE(6). BE SURE THE NIPLE FACE TO GROUND.
- 5- REMOVE 2-4X40 HEX NUTS(19) FROM THE BASE OF DI VALVE(4).
- 6- APPLY 2-6X FLAT WASHER(16) TO 2-DI VALVE STUDS.
- 7- ATTACH DI VALVE PAD(17) TO THE BASE OF DI VALVE(4), AND INSERT 2-4X FLAT WASHERS(18), THEN TIGHTEN IT BY 2-4X40 HEX NUTS(19).


ITEM	PART #	DESCRIPTIONS	QTY
4	1070206.17	VALVE ASSY. DI HP W/ELEC CONN.	1
6	4119233	1/4 NPT NIPPLES FURON	1
7	4119234	TEE, 1/4 NPT FURON MPF4T	1
8	4119732	FITTING 3/8X 1/4P	2
9	4114709	ADAPTOR, 1/4 NPT, PLASTIC	1
16	6X	FLAT WASHERS	2
17	1065801.1	PAD, DI VALVE 1/4"(4'X8')	1
18	4X	FLAT WASHERS	2

7

́9`

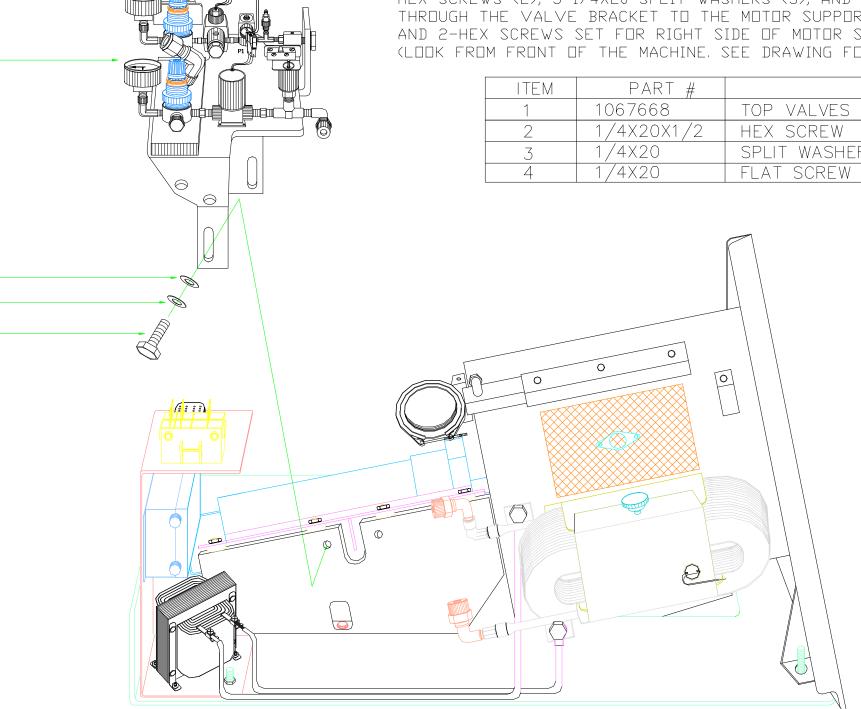
HIGH PRESSURE DI VALVE ASSEMBLY and INSTRUCTIONS 3

THEN TIGHTEN IT TO VALVE MOUNTING BRACKET(43) BY USING $2-8\times32\times1/2$ ROUND HEAD SCREWS(2), $2-8\times$ STAR WASHERS(3), AND $2-8\dot{X}$ FLAT WASHERS(4).

DESCRIPTIONS	QTY
VALVE ASSY. DI HP. OR LP.	1
ROUND HEAD SCREWS	2
STAR WASHERS	2
FLAT WASHERS	2
VALE MOUNT. BRACKET	1

1600-55 A/M

1

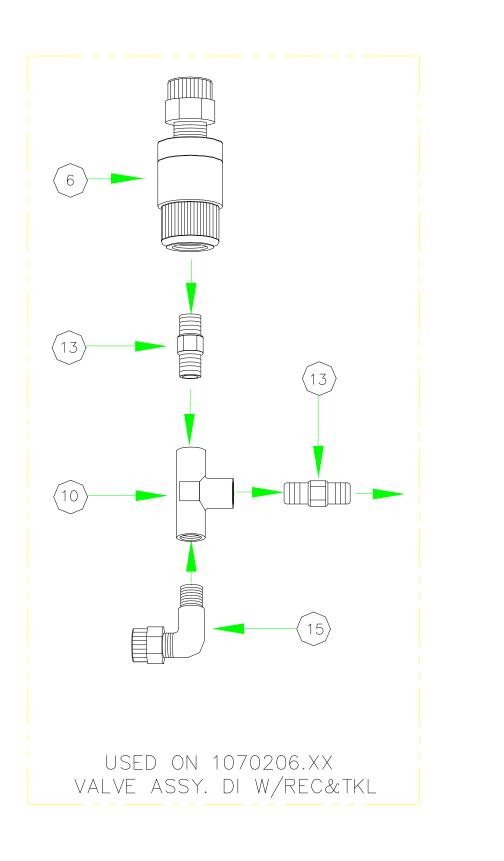

3

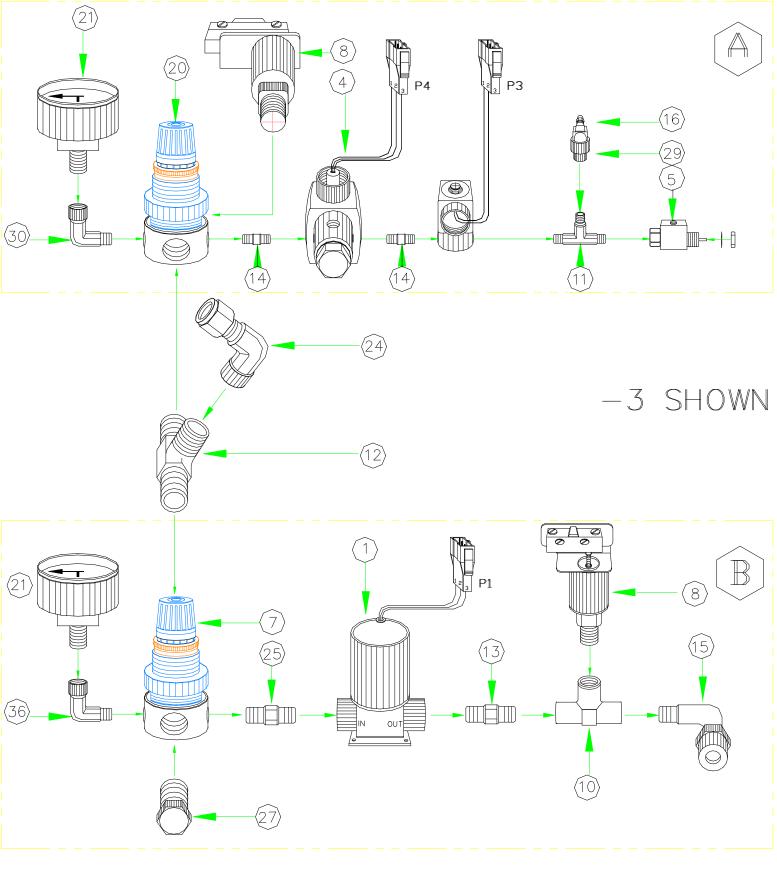
2)

TOP VALVES ASSEMBLY INSTRUCTIONS:

1- ATTACH THE TOP VALVES SET (1) ONTO THE TOP OF MOTOR SUPPORT BASE, USING 3-1/4X20X1/2 HEX SCREWS (2), 3-1/4X20 SPLIT WASHERS (3), AND 3-1/4X20 FLAT WASHERS (4), MOUNT THROUGH THE VALVE BRACKET TO THE MOTOR SUPPORT BASE. 1-HEX SCREW SET FOR LEFT SIDE, AND 2-HEX SCREWS SET FOR RIGHT SIDE OF MOTOR SUPPORT BASE. (LOOK FROM FRONT OF THE MACHINE, SEE DRAWING FOR MORE RELATION POSITIONS).

ITEM	PART #	DESCRIPTIONS	QTY
1	1067668	TOP VALVES SET	1 SET
2	1/4X20X1/2	HEX SCREW	3
3	1/4X20	SPLIT WASHER	3
4	1/4X20	FLAT SCREW	3




LEFT BOWL VIEW

TOP VALVE ASSEMBLY and INSTRUCTIONS 1600-55 A/M

-1 Shown

9300152.1

VALVE BRACKET ASSEMBLY and INSTRUCTIONS 1 1600-55 A/M

VALVE BRACKET ASSEMBLY and INSTRUCTIONS 2 1600-55 A/M

VALVE BRACKET ASSEMBLY INSTRUCTIONS:

NOTE: ALL PARTS HAS TO APPLY TEFLON TAPE.

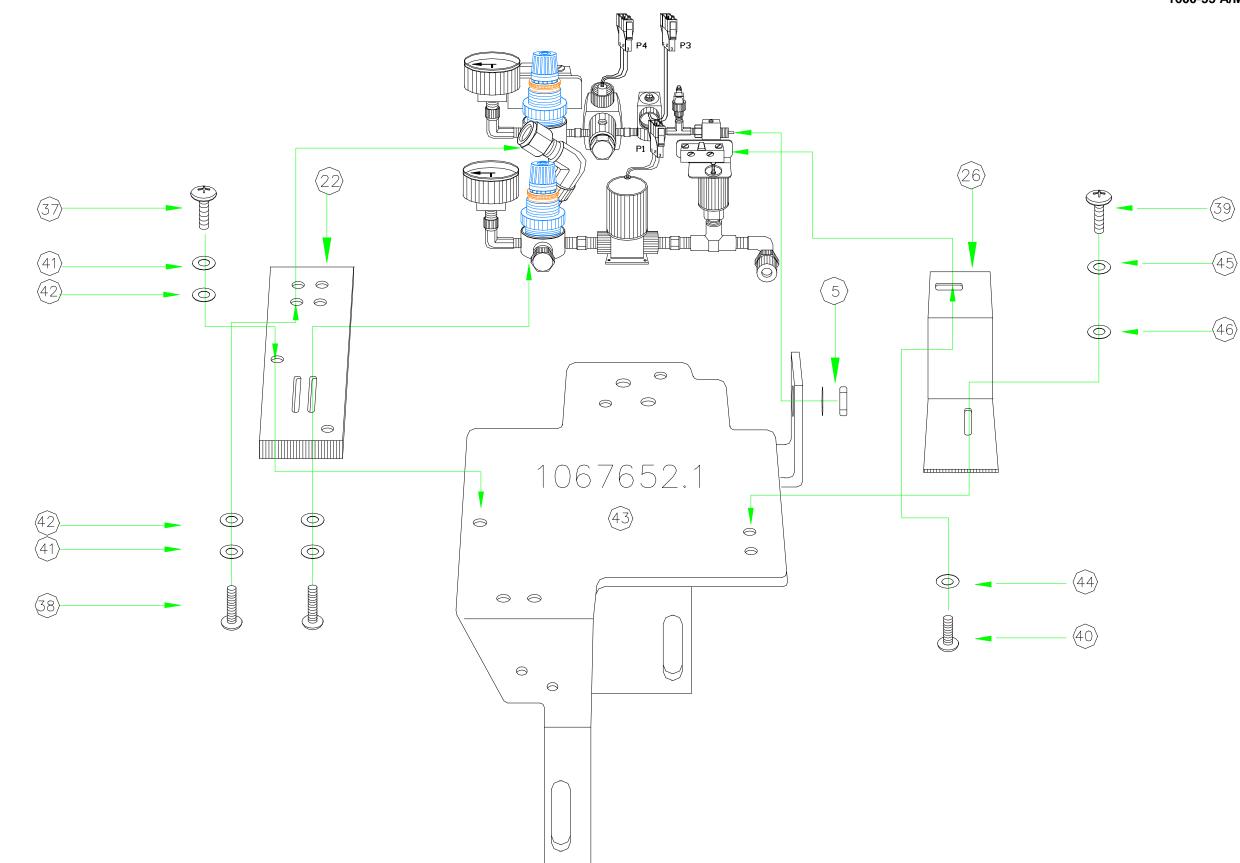
BLOCK A ASSEMBLY:

- 1— ATTACH TEE (11) TO THE VALVE, BLADE (5).
- ATTACH BUSHING (29) TO THE TEE (11). 2-
- 3-ATTACH FITTING (16) TO THE BUSHING (29).
- ATTACH SOLONOIL VALVE (3) TO THE TEE (11). 4—
- 5-ATTACH NIPPLE (14) TO THE SOLONOIL VALVE (3).
- ATTACH VALVE (4) TO THE NIPPLE (14). 6-
- ATTACH NIPPLE (14) TO THE VALVE (4). 7—
- ATTACH REGULATOR (20) TO THE NIPPLE (14). 8-
- ATTACH ELBOW (30) TO THE REGULATOR (20). 9—
- 10- ATTACH GAUGE (21) TO THE ELBOW (30).
- 11- ATTACH PRESSURE SWITCH(8) TO THE REGULATOR(20).

BLOCK B ASSEMBLY:

- ATTACH PRESSURE SWITCH (8) TO THE TEE (10). 1—
- ATTACH ELBOWL (15) TO THE END OF TEE (10). 2-
- ATTACH NIPPLE (13) TO THE TEE (10). 3-
- ATTACH DELTA VALVE (1) TO THE NIPPLE (13). 4-
- ATTACH NIPPLE (25) TO THE DELTA VALVE (1). 5-
- ATTACH PLUG (27) TO THE REGULATOR (7). 6-
- ATTACH REGULATOR (7) TO THE NIPPLE (25). 7—
- 8– ATTACH ELBOWL (36) TO THE REGULATOR (36).
- ATTACH GAUGE (7) TO THE ELBOW (36). 9-

BLOCK (A) & (B) ASSEMBLY:


- ATTACH ELBOW (24) TO THE TEE (12). 1—
- ATTACH TEE (12) TO THE REGULATOR (7) OF BLOCK B. 2-
- ATTACH BLOCK A TO THE END OF TEE (12). 3-

ITEM	PART #	DESCRIPTIONS	QTY
1	1070207.1	delta valve	1
3	1070208.1	VALVE SOLONOIL	1
4	1071972.501	VALVE, BLADDER ASSY.	1
5	4115679	VALVE BLADDER RELIEF	1
6	4119147	VALVE CK. LOW PRESS. MCV-9012X.5	1
7	1055411.3	REGULATOR	1
8	4114327	PREESURE SWITCH	2
10	4119234	TEE, 1/4 NPT MOLD. PIPE MPF4T	2
11	4117134	TEE	1
12	4115685	TEE MALE 1/4	1
13	4119233	NIPPLES, 1/4" NPT	3
14	4115682	NIPPLE, 1/8 CLOSE	2
15	4118953	ELBOW, 3/8X1/4NPT	2
16	4119123	FITTING, IMP44EAF	1
20	1055411.1	REGULATOR	1
21	4116212	GAUGE	2
24	4117137	ELBOW, FEMALE	1
25	4117135	NIPPLE, HEX	1
27	4117768	PLUG, PIPE 1/4 NPT	1
29	4119301	BUSHING, REDUCER	1
30	4117132	ELBOW, STREET	1
36	4117796	ELBOW, ST1/4X1/8FNPT	1

\mathbb{P}^{1}	P3	
1=RED	1=BLACK	1=
2=WHITE	2=BLACK	2=
3=GREEN	3=NONE	3=

$$\mathbb{P}4$$

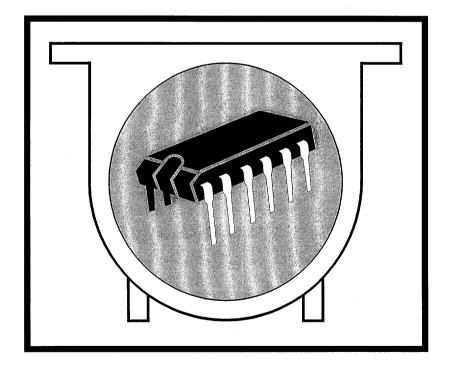
=RED =RFD S=GREEN/YELLOW

VALVE BRACKET ASSEMBLY and INSTRUCTIONS 3 1600-55 A/M

VALVE BRACKET ASSEMBLY and INSTRUCTIONS 4 1600-55 A/M

VALVE BRACKET ASSEMBLY INSTRUCT

- ATTACH REGULATOR PAD (22) TO UNDERNEATH OF 2-REGULATORS(20) BLOCK A & (7) BLOCK B. USING 4-8X32X3/8 ROUND 1— HEAD SCREWS (38), 4-8X32 STAR WASHERS (41), AND 4-8X32 FLAT WASHERS (42).
- ATTACH PRESSURE BRACKET (26) TO THE PRESSURE SWITCH (8) OF BLOCK (B) ASSEMBLY. USING 1-10X32X1/4 ROUND HEAD SCREW 2— (40), AND 1-10X32 STAR WASHER (44).
- UNSCREW HEX NUT AND STAR WASHER FROM THE VALVE (5) OF BLOCK ASSEMBLY (A). 3-
- 4- PUT VALES ASSEMBLY ONTO TOP OF THE MOUNTING BRACKET (43), MAKE SURE THE HEAD OF VALVE (5) (BLOCK ASSEMBLY A) GET THROUGH THE HOLE OF MOUNTING BRACKET STAND OFF (43).
- ADJUST THE PRESSURE BRACKET (26) TO GET THROUGH THE HOLE OF MOUNTING BRACKET (43). USING 1-6X32X3/8 ROUND HEAD 5-SCREW (39), 1-6X32 STAR WASHER (45), AND 1-6X32 FLAT WASHER (46).
- SCREW BACK THE HEX NUT AND STAR WASHER INTO THE VALVE(5) OF BLOCK ASSY.(A). THEN TIGHTEN IT BY BOTH SCREWS(39)&(40). 6-
- USING 2-8X32X3/4 ROUND HEAD SCREWS(37), 2-8X32 STAR WASHERS(41), AND 2-8X32 FLAT WASHERS(42) MOUNT FROM THE TOP 7— OF REGULATOR PAD (22) THROUGH THE MOUNTING BRACKET (43).


ITEM	PART #	DESCRIPTIONS	QTY
22	1063343.1	REGULATOR PAD	1
26	1067287.1	PRESSURE SWITCH BRACKET	1
37	8X32X3/4	ROUND HEAD SCREW	2
38	8X32X3/8	ROUND HEAD SCREW	4
39	6X32X3/8	ROUND HEAD SCREW	1
40	10X32X1/4	ROUND HEAD SCREW	1
41	8X32	STAR WASHER	6
42	8X32	FLAT WASHER	6
43	1067652.1	VALVES MOUNTING BRACKET	1
44	10X32	STAR WASHER	1
45	6X32	STAR WASHER	2
46	6X32	FLAT WASHER	2

SRD 1600-55M

SUPPLEMENT

CONVERSION TO SRD 1600-55A

RETROFIT PROCEDURES

RETROFIT OVERVIEW

The following list outlines the procedures to be followed when converting a SRD 1600-55M to a SRD 1600-55A:

Remove and Replacement the Front Cover Panel in order to accommodate the door actuator cylinder assembly, linkage, and bracket.

Remove and Re-use of the 3-pushbutton assembly.

Remove and Replace the existing Indexing Unit Assembly.

Remove the existing (-55M) manifold assembly.

Assemble a new Auto-Positioner assembly on the rear of motor housing.

Remove and Replace the Hinge Assembly.

Install a footswitch and its connection to the controller.

Install an additional door OPEN sensor.

DETAILED PROCEDURES

DISASSEMBLY/REMOVAL OF FRONT PANEL

- □ REMOVE top cover by extracting the thumbscrews and rear panel screws.
- **REMOVE** front door blue ring panel and set aside.
- DISCONNECT door bladder supply line at the coupling.
- **REMOVE** three screws that secure the door to the hinge.
- □ REMOVE the door and set aside.
- REMOVE the hinge by extracting the two remaining hex-head bolts located inside the unit at the rear of the front panel.

- **REMOVE** all screws that secure the front panel to its foundation bracket.
- □ REMOVE the 3-pushbutton assembly hold-down rings by unscrewing them counter-clockwise.
- □ REMOVE front panel cover.

NOTE

RTV is used to assist in securing the front panel. Observe placement of RTV in order to duplicate during re-assembly.

DISASSEMBLY; AUTO-POSITIONER AND MANIFOLD

- DISCONNECT all facility lines from inside coupling at the rear of the centrifuge unit.
- RE-POSITION the rear panel by flipping it over from top-to-bottom allowing it to rest on top of the valve bracket assembly area.
- DISCONNECT the (red) hi-voltage cable from the static eliminator transformer.

CAUTION

Exercise care in removing and disassembling the cable. Observe all hardware removed in order to facilitate correct re-assembly.

DISCONNECT the two leads from pressure switch (PSW3) located on the manifold assembly at the right rear of the unit.

NOTE

The referenced manifold assembly incorporates RG3 (regulator) and V105 (solenoid valve).

- DISCONNECT the solenoid valve by following the cable back to its connector (P5) and unplug it.
- REMOVE the manifold assembly by removing the mounting screws attaching it to the base of the centrifuge unit.

PLEASE REFER TO DRAWING **1065746** ASSY, AUTO-POSITIONER

- At the auto-positioner assembly, LOOSEN the set-screw securing the encoder (sprocket wheel) to the motor shaft.
- DISCONNECT the cable connector (J20) from the optical sensor board.
- DETACH the auto-positioner unit by removing the hardware used securing it to the unit at the rear of the motor.

NOTE

Auto-positioner detachment involves removal of the unit and its encoder wheel simultaneously.

ASSEMBLY

The following assembly procedure presumes that all preliminary disassembly and removal procedures have been followed as described previously. A majority of the assembly procedures are simply the reversal of the previous disassembly procedures.

DOOR HINGE

- □ INSTALL the replacement (new) door hinge.
- **REPLACE** the original pushbutton restaining rings.
- □ **RE-INSTALL** the door.
- □ RECONNECT the bladder.
- □ INSTALL the linkage, bimba cylinder, and bracket assembly (door air cylinder assembly).

PLEASE REFER TO DRAWING **1075418** SHEET 1 OF 2

- **REMOVE** the pin through the clevis and retain.
- □ MOUNT the linkage to door.
- □ MOUNT the air cylinder assembly to the bowl.
- □ RE-INSTALL the pin in the clevis.
- CONNECT the electrical cable leading form the proximity reed switch utilizing the "Y" (door cylinder cable) PART NUMBER 1076030.1 provided in the kit for the "C" or "common." The J16 connector will mate with P16.
- **REMOUNT** the blue ring panel on the door.

AUTO-POSITIONER

□ INSTALL the new auto-positioner assembly.

NOTE

The auto-positioner assembly is fabricated using the parts provided in the kit. It must be mounted to the back of the motor in stages in order to complete the assembly.

Assemble the auto-positioner to the rear of the motor housing as follows:

PLEASE REFER TO DRAWING 1075418 SHEET 2 OF 2

Utilizing the above referenced engineering drawing, observe the auto-positioner assembly. The pictorial balloon numbers depict the parts listed on the "parts list" provided in this supplement.

- □ MOUNT bracket (1)
- MOUNT wheel and key (5) with (23) to motor shaft, and tighten the setscrew.
- □ MOUNT the encoder (sprocket) disk to the wheel while simultaneously installing the optical sensor board to the bracket.
- □ MOUNT the cam with the shoulder screws, flat washers, and lock-washers provided.

NOTE

These screws are used in conjunction with the elongated holes in the cam providing accurate adjustment for 12 o'clock positioning during the *INDEX* condition.

□ MOUNT the indexing air (BIMBA) cylinder (8).

MANIFOLD

□ MOUNT the replacement (new) solenoid valve assembly (15).

□ CONNECT electrical cables to connectors.

- □ P105 to J105
- □ P106 to J106
- □ P107 to J107
- CONNECT together the two wires previously disconnected from PSW3 using the (red) butt-type connector supplied.

PLUMB-in all tubing as shown in the pictorial.

- \Box V105, index cylinder
- □ V107
- □ V106
- □ Manifold Assembly

_	 	 _
		11
		11
		11
1		
		i I
	 	 1

PLEASE REFER TO DRAWING 1075418 SHEET 1 OF 2

- □ ADJUST "OPEN" sensor.
- ADJUST Flow Control Valves (Door open and close needle valves)
- □ ADJUST "INDEX" for 12 o'clock

FINAL RE-ASSEMBLY

- □ RE-ASSEMBLE
 - Rear Panel
 - Facilitize the unit and check for leaks.

PARTS LIST [page 1]

1600-55M to -55A CONVERSION KIT

PART #	DESCRIPTION	QUANTITY
1067644.3	Bracket, mtg autopositioner	(1)
1067647.3	Cam, autopositioner	(1)
1067811.1	PCB Assy., optical sensor	(1)
1067631.3	Shaft, flange	(1)
1067633.1	Wheel, shaft 1600-5	
1067642.1	Disk, photocell 1600-5	(1)
1075936.1	BIMBA cylinder, auto-positioner	(1)
	Screw, #8-32 x 1" Flathead Phillips	(4)
	Tape, Teflon (A/R)	(1)
	Lockwasher #1/4 SS	(2)
	Flatwasher, #1/4 SS	(2)
5115268	Tubing, 82 in. of 1/4" OD teflon	(#)
	Nut, 8-32 HEX SS	(2)
1067668.505	Bracket, valve assy-air	(1)

PARTS LIST [page 2]

1600-55M to -55A CONVERSION KIT

PART #	DESCRIPTION	QUANTITY
1071667.1	Panel, Front 55A RH w/gasket	(1)
	Flatwasher, #8 SS	(2)
1067664.1	Hinge, Assy, RH	(1)
1067665.5	Door Cylinder Assy	(1)
1071936.1	Linkassy, door pivot 1600-5A RH	(1)
4117776	Scr, sld 1/4d x 1/2, 10-24 x 3/8 hex soc. hd stl 5475 Fastener West	(2)
1072843.120	Switch A, foot, NSRD 10' Cabinet	(1)
	Screw, set #8-32 x 3/8	(2)
1076030.1	Cable Assembly	(1)
	Butt Splice	(1)

ENGINEERING DRAWING LIST

DRAWING NO.	DESCRIPTION
1065746 (2)	ASSY, AUTO-POSITIONER
1075418 (2)	KIT, 55M-55A CONVERSION RETROFIT

(#) - number of sheets to drawing

<u>A</u>

Α	See ampere.
Å	See Ångstrom unit.
accident	An unplanned, unwanted event that disrupts the orderly flow of the work process, involves the motion (energy) of people, objects, or substances, and is indicated by physical injury, illness, and/or property damage. Both a hazard and exposure to the hazard are required for an accident to occur.
accident investigation	Inquiry to determine the root cause of an accident to prevent future similar accidents.
acetic acid	C ₂ H ₄ O ₂ .
ACK	Acknowledge. A touchscreen prompt.
agitation (EE wash tank)	The introduction of N_2 into the end effector wash tank. This stream of gas keeps the DI water moving and free of stagnation. Parameters for this function are set in tank configuration.
agitation (mechanical)	A platform inside the chemical process tank that moves cassettes up and down at a factory preset frequency of 30 cycles per minute and an amplitude of 1.1 inches (see figure below). This device is adjustable in both frequency and amplitude. The frequency is driven by city water and is adjusted using AOVs. The amplitude can be adjusted to one of three settings; 0.8 inches, 1.1 inches and 1.5 inches. For adjustment procedures see the Preventive Maintenance manual, Part III, Section 2.7, <i>Mechanical Agitation Adjustment</i> .

agitation (robot)

Agitation is the "dipping" of product lots into and out of a tank. This function is used in semi-automated systems in which the robot holds the process cassette during the entire process recipe. Agitation parameters are configurable on the touchscreen, as described below.

Longer, slower movement of agitation is accomplished by configuring a relatively low frequency and high amplitude. See explanation below.

To edit robot agitation parameters, make the following touchscreen selections:

- 1. Select Recipe from the Process menu button.
- 2. Select Edit.
- 3. Select a recipe from the displayed list.
- 4. Select Edit Parameters.
- 5. Select the tank that is to be edited for robot agitation.
- 6. Select Robot Agitation.
- 7. Enter values as defined below.

Duration is the length of agitation time, which begins as soon as the robot delivers product into a tank. If the entered Duration is greater than the recipe's process time in that tank (set in recipe configuration), the system defaults to 3600 seconds or the process time, whichever is smaller. If agitation is not needed, set Duration to zero (0).

Frequency	(0-3600 sec.) (1-30 cyc/min) (0.1-3.0 in)	<u>1</u> 5 10 3.00
DONE	E	SC

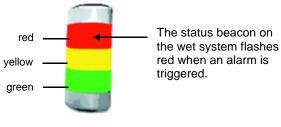
Agitation Parameters

Frequency is the number of agitation cycles per minute. In one cycle, the robot moves up from the taught tank position, to the Amplitude height, then back into the tank. If the value entered is greater than 60, the value defaults to 60.

Amplitude is the height the robot rises during agitation from the taught tank position. The amplitude cannot exceed the taught carry height, regardless of the value entered here.

NOTE

- The value entered for Amplitude places limits on Frequency.
- Maximum amplitude is 20 inches or the distance between the taught carry height and the taught tank position, whichever is
 less.
- The ranges for Frequency and Amplitude vary for wet systems, but not from module to module within one wet system.


Maximum Configuration Values and Amplitude's Effect on Frequency, Acceleration, and Velocity					
Amplitude (inch)	Maximum Resulting Frequency (cycles/min)	Maximum Acceleration (in/sec/sec)	Maximum Velocity (in/sec)		
1	60	16	4		
2	58	30 8			
3	47	30 12			
4	41	30	14		
5	21	10 in/sec/sec above 4- inch amplitude	8 in/sec above 4-inch amplitude		
6	19				
7	18				
8	17				
9	16				
10	15				
20	11				

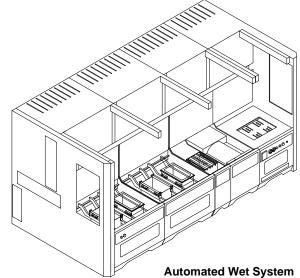
 AI_2O_3

Aluminum oxide.

alarm

An alarm is any abnormal situation that may endanger people, equipment, or material being processed. Every alarm is assigned one automatic response level (see table below) and displayed in real time on the touchscreen.

Status Beacon


Also see critical alarms, exhaust alarms, and status beacon.

Alarm Response Levels						
Key	Response Level*	Automatic Actions				
0	No Action	 No effect on recipes in progress New lots are allowed Audible and visual alarms Condition is displayed on the touchscreen and written to log file Scheduler is <i>not</i> notified 				
1	Runout	 No effect on recipes in progress New lots are <i>not</i> allowed Audible and visual alarms Alarm message is displayed on the touchscreen and written to log file 				
2	GoToSafe	 Lot is moved into or kept in a safe tank until problem is fixed New lots are <i>not</i> allowed until alarm is cleared Audible and visual alarms Alarm message is displayed on touchscreen and written to log file 				
3	System Stop	 Automatic processing stops Recipes in progress continue to count down and can be resumed New lots are not allowed Audible and visual alarms Alarm message is displayed on the touchscreen and written to log file 				
4	Process Continues	 No effect on recipes in progress New lots are allowed Audible and visual alarms Alarm message is displayed on the touchscreen and written to log file Scheduler is notified 				
*Every alarm is assigned one response level.						

allocated	A device (for example, a tank) is powered, functional, and designated for use in a processing recipe.				
alloy	Composition of two elements, one of which must be metal.				
aluminum oxide	Al ₂ O ₃ .				
ambient	Surrounding, as in ambient air or ambient temperature.				
ambient temperature	See temperature of process chemicals.				
ammonia	NH ₃ .				
ammonium chloride	NH ₄ Cl.				
ammonium fluoride	NH ₄ F.				
ammonium hydroxide	NH₄OH.				

ammonium peroxide mixture (APM)	See chemical processes.
ammonium persulfate	NH ₄ S ₂ O ₂ .
amp	See ampere.
ampere (A or amp)	A unit of electric current.
amplifier	An electronic circuit used to increase voltage, current, or power.
Ångstrom (Å) unit	$1 \text{ Å} = 1 \text{ x } 10^{-4} \mu\text{m or } 1 \text{ x } 10^{-10} \text{ m.}$
ANSI	American National Standards Institute.
antiresonance	Other terms used: resonant frequency, antiresonant frequency, parallel resonance.
frequency	The condition for which the impedance of a given electric, acoustic, or dynamic system is very high, approaching infinity. This frequency is the one that allows GFT's Megasonic systems to have the lowest reflected power. This frequency would therefore be the one that provides the best impedance matching between the amplifier and transducer.
	The frequency at which the parallel impedance of a parallel resonant circuit has a power factor of unity.
AOV	Air-operated valve.
A/P	Accounts payable.
APM	Ammonium peroxide mixture. See chemical processes.
AQR	Aqua regia. See chemical processes.
aqua regia	See chemical processes.
Ar	See argon.
AR	Assigned responsibility.
A/R	Accounts receivable.
argon (Ar)	One of the noble (extremely nonreactive) gases.
ASCII	American Standards Code for Information Interchange. A 7-bit standard code.
Aspirated drain (aspirator)	Device in a tank drain line that mixes water, at a predefined ratio, with liquid draining from the tank. Used for cooling and diluting, aspirator typically has no moving parts. See recirculation, draining, and automated drain interlocks for heated tanks.

assist	Any unplanned interruption or variance from specifications of equipment operation that requires human intervention of less than 6 minutes to correct. After 6 minutes, an assist becomes a <i>failure</i> . [From SEMATECH Official Dictionary, Rev. 5.0, 1995]
automated wet	Automated wet systems have the following features and capabilities:
system (AWS)	 The operator enters and removes product lots.
()	 A one-arm, two-axis or a two-arm, three-axis robot transfers cassettes from one tank to another.
	 The control software schedules cassette transfers, cleans the robot end effector when possible, and ensures that a safe (DI water) tank is always available for every product lot.
	 Tanks are arranged from one end of the wet system to the other (and end-to-end arrangement).
	 The wet system has a <i>dry in-dry out</i> capability (the robot removes the cassette from the dryer as the final processing step).
	• Multiple product lots can be concurrently processed (lot threading). This feature is unique to automated wet systems. The robot retrieves cassettes from an input position and releases them during their dwell time in process tanks, leaving the robot free to retrieve and transfer other product lots.
	Also see wet system; semi-automated wet system; manual wet system.

autopositioner (SRD) A mechanical cylinder (air/N₂) that automatically positions the rotor at the end of every cycle so the carrier stops in the upright position, ensuring the wafers cannot fall out during removal

- **autowash (SRD)** Rinse/dry recipe, programmed to occur automatically after elapsed time intervals and/or number of completed operational cycles. Designed to maintain cleanliness in the SRD.
- AWS See automated wet system.
- AWSF Automated wet system, front access.
- AWSR Automated wet system, rear access.
- **axis** See robot axes.

<u>B</u>

bath	See chemical bath, also see tank.
battery-backed random-access memory (RAM)	RAM that is powered by a long-life battery so that it retains information if the unit it is in loses power.
baud	A unit for measuring data transmission speed. Divide the baud rate by the number of data bits plus stop bits plus start bits to calculate the characters per second (cps); for example, 9600 baud rate typically equals approximately 960 cps.
bay	A section of the cleanroom dedicated to specific pieces of equipment or processes.
	Also see cleanroom, bay-and-chase.
BCD	Bulk chemical distribution. See chemical delivery system (preferred term).
BCF	See bead- and crevice-free.
beacon	See status beacon.
bead- and crevice-free (BCF)	Refers to plastic welding.
bench	See wet system (preferred term).
bench beta site testing	See wet system (preferred term). Testing of new equipment (usually at the customer's site).
beta site testing	Testing of new equipment (usually at the customer's site).
beta site testing BHF	Testing of new equipment (usually at the customer's site). See buffered hydrofluoric acid. Pertaining to a system that exists in two conditions, such as OFF/ON. Usually
beta site testing BHF binary	Testing of new equipment (usually at the customer's site). See buffered hydrofluoric acid. Pertaining to a system that exists in two conditions, such as OFF/ON. Usually represented in computer code by 0 and 1. Computer files generated in machine language that can be directly executed by the
beta site testing BHF binary binary files	 Testing of new equipment (usually at the customer's site). See buffered hydrofluoric acid. Pertaining to a system that exists in two conditions, such as OFF/ON. Usually represented in computer code by 0 and 1. Computer files generated in machine language that can be directly executed by the computer. <i>Abbreviation for</i> binary digit. The smallest unit of information recognized by a computer;
beta site testing BHF binary binary files bit	 Testing of new equipment (usually at the customer's site). See buffered hydrofluoric acid. Pertaining to a system that exists in two conditions, such as OFF/ON. Usually represented in computer code by 0 and 1. Computer files generated in machine language that can be directly executed by the computer. Abbreviation for binary digit. The smallest unit of information recognized by a computer; represented as either of the digits 0 or 1.
beta site testing BHF binary binary files bit bit map	 Testing of new equipment (usually at the customer's site). See buffered hydrofluoric acid. Pertaining to a system that exists in two conditions, such as OFF/ON. Usually represented in computer code by 0 and 1. Computer files generated in machine language that can be directly executed by the computer. Abbreviation for binary digit. The smallest unit of information recognized by a computer; represented as either of the digits 0 or 1. Individual bits, because of their position in a byte, represent specific information.

blocks	A VcS recipe management term. Blocks are assigned a number (1 through 6) and are then assigned to a recipe STEP. There is flexibility in which Block number is assigned to which STEP (e.g., Block number 4 can be assigned to be the first Step (1) in the recipe.				
	Also see Steps and Periods				
BNC connector	Bayonet-Neill-Concelman backplate connector used with Thin Ethernet or ThinNet type coaxial cable to connect audio and video devices as well as network components.				
boat	See cassette (preferred term).				
BOE	Buffered oxide etch. See chemical process.				
bowl (SRD)	Process chamber for rinse and dry procedures.				
bps	Bits per second.				
Bridgman Technique	Method of growing an ingot of silicon by pulling a seed rod from the bottom of a crucible of liquid.				
bubbler	See N ₂ bubbler.				
buffered hydrofluoric acid (BHF)	Hydrofluoric acid and some buffering chemical, typically ammonium fluoride (NH $_4$ F).				
buffered oxide etch (BOE)	See chemical process.				
bug	A term used to denote an oversight or conflict in a computer program or system.				
bulk chemical distribution (BCD)	See chemical delivery system (preferred term).				
bulk fill	Chemical is brought directly into the wet-system tank through a facility plumbing line.				
	Also see manual fill.				
bulkhead	The wall (in the cleanroom) that separates the process area from the service chase.				
	Also see cleanroom, bay-and-chase.				
bulkhead mounting	See wet-system mounting.				
byte	A group of eight bits. Two bytes equal a word.				

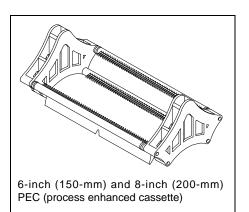
<u>C</u>

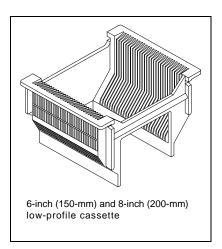
3 °	See degrees Celsius.

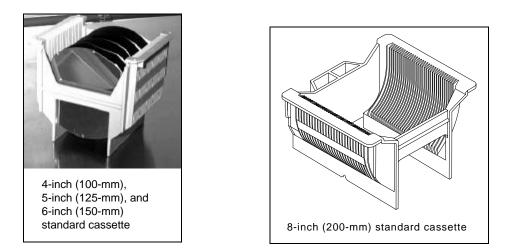
CH₃COOH Acetic acid.

calibration A set of graduations marked to indicate known values. Alignment of electrical or mechanical equipment against a known standard.

carbon dioxide See CO₂.

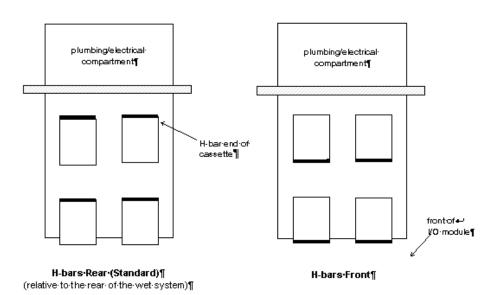

carrier See cassette (preferred term).

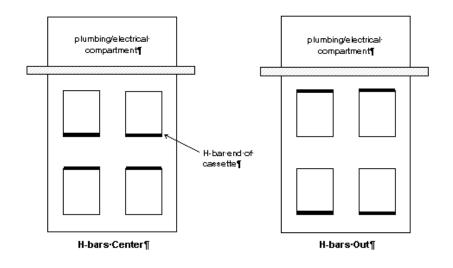

cascade rinse See chemical process.


cassette Also known as boat; carrier. Also see H-bar.

The basket, or carrier, that holds the product to be processed (typically wafers). Process cassettes, usually made of PFA, hold wafers during processing. Transport cassettes look like process cassettes, but are usually made of PEEK or polypropylene. Transport cassettes are used to transport wafers from one device or wet system to another but are not used for processing. Some systems use the same cassette for both transport and process.

Cassettes commonly used in GFT wet systems are shown below.

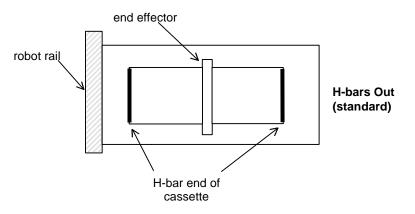


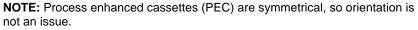

cassette placement

Placement of cassettes in the input/output queue of the wet system is extremely important. Improper placement can result in severe wafer damage. The following drawing shows proper placement of cassettes in the input queue of automated and semi-automated wet systems.

Input/Output Queue—Cassette Placement

A. Automated Wet Systems:




Convention:

- 1. If input and output queues are both in module 1: column of queues closest to module 2 is INPUT
- If input and output queues are at opposite ends of the wet system: INPUT is in module 1 OUTPUT is in last module (module n+1)

B. Semi-automated Wet Systems:

Semi-automated wet systems have dual cassettes for balance. The H-bars face away from each other with the end effector in the middle.

cassette, process

See cassette.

С

cassette, transport	See cassette.
СВ	Circuit breaker.
ccm	Cubic Centimeters per Minute (cfm / 28320 = ccm).
	See cfm.
CDA	Clean dry air.
CDS	See chemical distribution system.

Commission of European Communities. CE

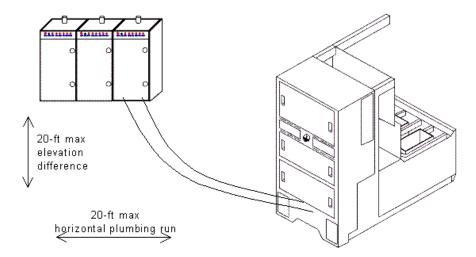
Computer that houses a CPU and the control system software. The cell controller cell controller communicates with the PLC which controls system devices.

Also see wet-system control system.

- See degrees Celsius. Celsius
- See degrees Celsius (preferred term). centigrade

cfm Cubic feet per minute (unit of volumetric flow rate).

See ccm


- CFR Code of Federal Regulations.
- Located between the rear cabinet and plenum (see drawing). Constructed of powder-**C**-frame coated steel covered with fire-retardant polypropylene (FRPP) or, white polypropylene (WPP), or other plastics.

Module

CH₃CHOHCH₃	Isopropyl alcohol (IPA). Also known as 2-Propanol.				
CH₃COOH	Acetic acid.				
character	Any symbol, digit, letter, or punctuation mark stored or processed by computing equipment, requiring approximately eight bits.				
chase	See service chase (preferred term).				
checksum	A summation of digits or bits used for checking purposes.				
chemical	The chemical used in wet processing; may be either a rinse chemical or a process chemical.				
chemical bath	(noun) A washing or soaking of the product in a chemical tank containing a process chemical.				
chemical distribution system (CDS)	The chemical distribution system (CDS) supplies chemicals to the wet system's processing modules. It is installed in the cleanroom or in the subfab below the wet system. A CDS comprises up to eight individual modules, each of which houses a chemical drum (up to 55-gallons). An air-operated pump dispenses chemical from the drum, through dedicated plumbing lines, to one or two wet system tanks.				
	Each module is a stand-alone unit. If one module is shut down for refilling, maintenance, or is experiencing an alarm, the other modules remain functional. For safety, a single electrical disconnect and an EMO (emergency off) pushbutton, located on a main control cabinet, can shut down all modules in the CDS.				
	The CDS dispenses chemical only when the wet system calls for it during automated operation. There are no manual controls on the CDS for dispensing chemical to the wet system.				
	When the control system receives the proper signals, chemical is pumped from the specified chemical cabinet to the requesting module's processing or staging tank. When the chemical reaches the tank's process-level sensor, the pump and valves in the chemical cabinet shut down or off.				
	If the wet system simultaneously requests chemical for two tanks, the CDS dispenses chemical on a "first come, first serve" basis.				
	Also see Chemical Distribution System (Part No. 9340032 x)				

Also see Chemical Distribution System (Part No. 9340032.x).

Each CDS module dispenses only one chemical, but can supply two wet system tanks. Each CDS module has a control panel, with the following indications and controls.

•						
EMO SONALERT	EXHAUST FAIL/SILENCE	PLENUM	DRUM LOW LEVEL	FACILITY ERROR	CONTROL POWER OFF	CONTROL POWER ON
EMO (EMERGENCY POWER OFF)	Cuts all operating power (24 VDC) to the CDS module. Pumps, valves, communication with the wet system, and alarm functions all shut down. The EMERGENCY POWER OFF on the rear of the module also shuts down.					and
SONALERT	Sounds duri	ng an Exł	naust Fail ala	arm.		
EXHAUST FAIL/ SILENCE Alarm	 Silences the Sonalert. Does not correct the alarm. Exhaust fail causes an emergency shutdown (EMO) of the affected module. This occurs after a configurable time delay, which allows transient losses of exhaust flow to recover without shutting down the CDS module. 					
PLENUM HIGH Alarm	Float switch triggers an EMO when liquid is sensed in the plumbing compartment.				e	
DRUM LOW LEVEL Alarm	 Chemical drum needs to be replaced. Pump stops and dispense valves close in that cabinet to minimize air introduced into the dispense line. This alarm occurs after a preset time delay (typically 5 seconds). The delay ensures that all chemical has been dispensed from the drum. Triggered by a differential pressure sensor (see Technical Reference). 					

CDS Control Panel

FACILITY ERROR Alarm	 Illuminates when either CDA or N₂ supply is lost. CDA is used for the module's pumps and valves; N₂ is used for 1) purging the chemical drum and 2) the drum low-level sensing. 	
	System Ready signal disabled	
CONTROL POWER ON	Must be ON (illuminated) for the module to operate. Turns off automatically when any of the following occur: door is opened CONTROL OFF is pushed EMO is pushed exhaust alarm	
CONTROL POWER OFF	Turns off the module's control power.	

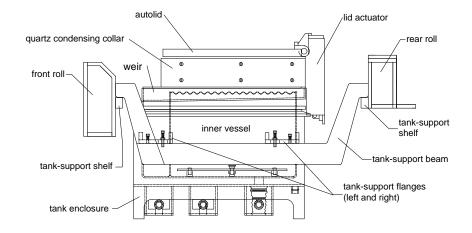
• facility bulk fill directly into process tank facility bulk fill into staging tank ٠ chemical distribution system (CDS) ٠ • manual fill into process tank manual fill into staging tank or reservoir • Typically, a wet system uses only one chemical-fill approach; however, different modules of the same wet system can use different chemical fills. chemical A processing step used in multiple-layer semiconductor devices to flatten the tops of layers to provide a uniform base for subsequent layers. mechanical polish (CMP) A process used to strip, etch, or clean the product. chemical process Also see process; rinse process.

Chemicals are delivered to process tanks in the following ways:

chemical fill

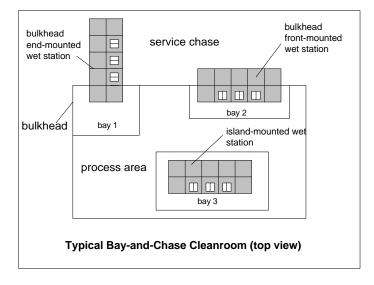
GFT Baseline Chemical Processes						
Name of Process*	Abbrevi- ation*	Other Names Commonly Used	Type of Process	Function	Chemical Composi- tion (Chemical Symbols)	Temper- ature Range (°C)
Chemical P	rocesses					
Ammonium peroxide mixture	APM	Standard clean type 1 (SC1), RCA1, Huang 1	Clean	Removes particles and light organics	DI water/hydrogen peroxide/ ammonium hydroxide (H ₂ O/H ₂ O ₂ / NH ₄ OH)	60 to 70
		Ti strip Ti etch	Strip Etch	Removes titanium	DI water/hydrogen peroxide/ ammonium hydroxide (H ₂ O/H ₂ O ₂ / NH ₄ OH)	30 to 60
Aqua regia	AQR		Clean	Removes gold and mercury	Hydrochloric acid/nitric acid (HCl/HNO ₃)	90
Buffered oxide etch	BOE	BHF	Strip or etch	Removes silicon dioxide	Ammonium fluoride/ hydrofluoric surfactant (NH ₄ F/HF/ surfactant)	18 to 60
Dilute hydrofluoric acid	DHF	Hydrofluoric acid (HF), oxide etch	Etch or clean	Removes silicon dioxide	Hydrofluoric acid/DI water (HF/H ₂ O)	18 to 60
Hydrochloric peroxide mixture	HPM	Standard clean type 2 (SC2), RCA2, Huang 2	Clean	Removes metal	DI water/hydrogen peroxide/ hydrochloric acid (H ₂ O/H ₂ O ₂ /HCI)	60 to 75
Nano strip (manufac- turer's product name)	NAN		Strip or etch	Removes photoresist and organics	Sulfuric acid/ hydrogen peroxide (H ₂ SO ₄ /H ₂ O ₂)	20 to 80
Native oxide etch	NOE		Strip or etch	Removes silicon dioxide	Ammonium fluoride/ethylene glycol/DI water/ surfactant (NH ₄ F/ HOCH ₂ CH ₂ OH/ H ₂ O/surfactant)	20 to 28
Nitride strip	HP (hot phos- phoric acid)	Hot phos, PHOS	Strip or etch	Removes silicon nitride	DI water/ phosphoric acid (H ₂ O/H ₃ PO ₄)	150 to 180
Phosphoric acetic nitric etch	PAN	Slope etch	Strip or etch	Removes aluminum	Phosphoric acid/ acetic acid/nitric acid (H_3PO_4 / C H_3COOH / HNO ₃)	55
		Al etch	Etch	Removes aluminum	Phosphoric acid/ nitric acid (H ₃ PO ₄ / HNO ₃ /H ₂ O)	30 to 45

(continued)


Name of Process*	Abbrevi- ation*	Other Names Commonly Used	Type of Process	Function	Chemical Composi- tion (Chemical Symbols)	Temper- ature Range (°C)
Chemical P	rocesses (continued)				
Shipley Developer MF-501 (manufac- turer's product name)	DEV	Developer	Strip	Removes positive resist	Tetramethyl ammonium hydroxide ((CH ₃) ₄ NOH)	18 to 35
Solvent (typically the name of the solvent such as EKC 944, SST-1, PSR-1)	SLV		Strip or etch	Removes photoresist	Varies	Varies
Sulfuric peroxide mixture	SPM	Piranha strip, resist strip	Strip or etch	Removes photoresist and organics	Sulfuric acid/ hydrogen peroxide (H ₂ SO ₄ /H ₂ O ₂)	130 to 160
Verteq clean System	VcS		Strip or etch	Removes particles, metals, silicon dioxide, and organics	DI water/ surfactant/ ammonium hydroxide/ hydrogen peroxide hydrochloric acid/ hydrofluoric acid (H ₂ O/surfactant/ NH ₄ OH/H ₂ O ₂ / HCI/HF)	18 to 70 (varies depending of process step
Rinse Proce	esses					
Overflow rinse	OFR	Cascade rinse	Rinse	Removes excess chemical	DI water (H ₂ O)	Ambient
Quick dump rinse	QDR		Rinse	Removes excess chemical	DI water (H ₂ O)	Ambient
Surfactant	SRF		Rinse	Removes excess chemical	DI water/ surfactant (H ₂ O/ surfactant)	Ambient

(verb) Processing (stripping, etching, or cleaning) the product by washing or soaking it in

chemical a chemical bath. processing Also see process chemical. See metering pump. chemical spiking Container in which the product is chemically processed. An example of a chemical tank chemical tank


is shown below.

Also see rinse tank.

Chemical Tank (side view)

"chemraz"	A trade name for a blend of PTFE with elastomers to form a material used primarily as a sealing medium.
chilled water	Water at below-ambient temperature.
	Also see temperature of process chemicals.
chilling	See temperature of process chemicals.
chip	A small component that contains a large amount of micro electronic circuitry.
chromium	Cr.
city water	Water supplied by the city (tap water). Usually not used in a rinse process. Used to open and close water-actuated tank lids.
cleaning	The removal of contaminants from the wafer surface during process steps.
cleanroom, bay-and-chase	Bay-and-chase cleanrooms usually consist of a process area and a service chase. The process area is the clean area. Wet systems are located in bays in the process area, and they may extend into the service chase. The service chase around or behind the process area allows access to the plumbing and electrical cabinets of process equipment for servicing.
	A simplified bay-and-chase cleanroom is shown in the following drawing. Cleanrooms at customer sites may contain one or more wet systems and associated equipment laid out in any of a number of ways.
	Also see wet-system mounting.

cleanroom classification	Cleanrooms are classified based on the concentration and size of airborne particles in the cleanroom measured in microns (μ m) per cubic foot of air. A Class 100 cleanroom has 100 or fewer particles of 0.5 μ m and larger (and/or no particles 5.0 μ m and larger) in 1 ft ³ of air.
CMOS	Complementary metal oxide semiconductor.
СМР	See chemical mechanical polish.
CO ₂	Carbon dioxide. Used as a fire suppressant.
coax	See coaxial cable.
coaxial cable (coax)	A special two-conductor shielded cable with fixed impedance that permits the transmission of electrical energy.
Color (in touchscreen displays)	See touchscreen displays.
combustible liquid	A liquid having a flash point at or above 100°F.
condensing coils	Tubes, used to circulate ambient-temperature water, built into the top of some heated tanks. The ambient-temperature water cools chemical vapors and causes condensation on the bottom of the tank lid. If the process chemical includes DI water and the tank's operating temperature is above 100°C, the water boils off, is reduced to liquid on the cold condensing coils, and drips back into the tank. The result provides a more consistent chemical concentration in the process tank and reduces the loss of DI water in the exhaust system. See temperature control for nitride-strip processes. Also called reflux collar.
conductor	A substance or body capable of conducting and carrying electric current, usually having low resistance.
contaminants	Particles that can cause defects in physical structures or electrical functionality that may result in the failure of a semiconductor device. Contaminants typically come from humans, the chemicals used, the process equipment, the manufacturing environment, and the wafer itself as materials are added and removed.

contaminated part	Wet-system parts that have been exposed to hazardous chemicals. Usually parts in the field or returned from the field.
control software	See wet-system control system; robot control system.
cool-down box	See cooling tank (preferred term).
cooling tank	Used in draining of heated tanks to cool liquid before it is drained into waste or reclaim systems. Cooling tank operation is interlocked with recirculation system valves and pumps. See recirculation and draining.
core	See service chase (preferred term).
CPFA	Carbon-filled PFA.
cps	Cycles per second.
	Also see hertz.
CPU	Central processing unit.
Cr	Chromium.
CR	Carriage return. A selection on the touchscreen keyboard; pressing CR enters information and advances the cursor to the next line.
crash detect	See obstruction sensor (preferred term).
critical alarms	 Any alarm may be designated as critical, in addition to its automatic response level. Critical is provided to identify a high level of seriousness and requires an additional operator response on the touchscreen to recover from the alarm. (The CRITICAL button on the associated tank control screen turns red and must be touched to clear the alarm.) The GFT default alarm responses include two critical alarm assignments: Plenum in module (#) is full Rear plumbing area in module (#) is full
	Critical alarms do not disable manual commands from tank control screens, the DIO screen, or the robot joystick.
	Also see alarms and status beacon.
crystal	A quartz crystal that vibrates at a specific frequency when energy is supplied to it.
crystal structure	A three-dimensional lattice of molecules or atoms of a specified material or element.
CVD	Chemical vapor deposition.
cycle	The application or step in a series that make up a process.
Czochralski Technique	Method of growing an ingot of silicon by pulling a seed rod from the top of a crucible of liquid.

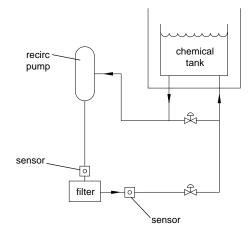
D

damper, exhaust	An adjustment flange (butterfly valve) used to adjust exhaust flow from a module.
	Also see exhaust alarm and control systems.
dBA	Decibels (dB) on A-weighted scale.
DCR	See Document Change Request.
DDV	Diluted-drain valve.
dead leg	Any point in the plumbing where more than two times the diameter of the pipe has a possible stoppage of flow. No dead legs are allowed in any DI-water line. DI-water manifolds should have a flow-through design to maintain a continuous flow. Valves in the DI lines should have a trickle flow bypass or 1/8-inch bleeders.
debounce timers	Debounce timers eliminate needless errors and alarms. As tanks fill and drain, or when product enters or leaves, liquid can slosh and trigger sensors. Debounce values allow liquid levels to stabilize inside the tank before needless error messages are sent. Debounce values are set in tank configuration. Tank level operational functions and interlocks are defined in tank levels.
	ant Reg: No

Timers'		Keq: No		
11001-2	ra	Min Lev Deb	(0.1 sec)	50
		Htr Lev Deb	(0.1 sec)	15
		Chem 1 Lev Deb	(0.1 sec)	10
		Chem 2 Lev Deb	(0.1 sec)	10
		Chem 3 Lev Deb	(0.1 sec)	10
		Proc Lev Deb	(0.1 sec)	15
geometrication and geococcount	P. 200000	Max Lev Deb	(0.1 sec)	15
		Replen Lev Deb	(0.1 sec)	1
		DONE	E	SC

Typical Debounce Configuration Screen

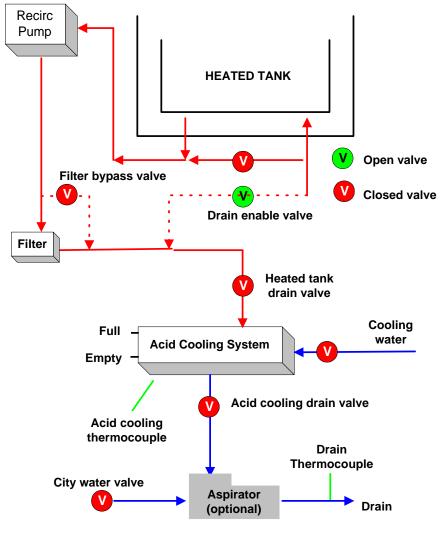
debug	To troubleshoot and correct malfunctions.
decibel (dB)	A unit used to express relative difference in power between acoustic or electrical signals, equal to 10 times the common logarithm of the ratio of the two levels.
decktop	A cover over the plenum and around the chemical tanks to create a physical barrier between the process environment and the lower plenum area. Decktops create a local exhaust system.
default	An action automatically carried out or a value automatically used unless another one is specified.
defect	An area of the wafer that is damaged and thus unusable (the remainder of the wafer is usable). Also see scrap wafer.
degrees Celsius (°C)	A thermometric scale where 0° is the freezing point of water and 100° is the boiling point. Formula to convert to degrees Fahrenheit (°F): $9/5C + 32$.
deposition	Application of material onto a substrate or wafer using a chemical, vapor, electricity, or vacuum process.


delta p	See differential pressure.
DEQ	Department of Environmental Quality.
DEV	Developer. See chemical process.
device	A mechanism, tool, or piece of equipment designed to serve a special purpose or perform a special function (for example, the robot, SRD, or tank). Use the specific name of the device if possible, rather than the generic term <i>device</i> .
DHF	Dilute hydrofluoric acid. See chemical process.
DI water Flowmeter	Flow meter attached to flow switch or device designed to alarm at a specified rate of flow; may have adjustable threshold.
DI water	Deionized water.
DI reclaim	 Rinse Tank Module Plenum Wodule Plenum Wodule Plenum Waste DI reclaim is enabled and configured in tank and recipe configuration. DI reclaim is enabled and configured in tank and recipe configuration. DI reclaim is enabled and configured in tank and recipe configuration. Configure the tank: Select Process menu button on the main screen, then Tank Config. Select DI Hardware. Enter 1 for DI Reclaim. Select Rinse from the Tank Config menu. Enter the number of rinse cycles to be drained to the facility waste line in DI dumps to waste, then save the configuration.
	Verify recipe's rinse cycles:
	In recipe management, verify that the recipe in question has enough dump cycles (the combined values for Hot Dump Cycles and Cold Dump Cycles).

DI water drain The system can drain DI water in one of three ways:

- all rinse cycles drain to facility waste.
- all rinse cycles drain to the facility's DI reclaim line.
- after a specified number of rinse cycles have drained to the chemical waste line, the remaining dumps are diverted to DI reclaim. See *DI reclaim*, above.

Differential pressure (**D**P)


The difference in pressure between two points ($\Delta P = P1 - P2$). Sensors in the chemical tank recirculation lines measure pressure upstream and downstream from the filter. When the pressure differential exceeds a configurable preset value, the filter must be changed. This condition can trigger an alarm and/or a message on the touchscreen advising the operator to change the filter).

Pressure Differential in Chemical-Tank Recirculation System

diffusion	High-temperature process used to introduce dopant atoms into the silicon surface.		
process	Also known as <i>doping</i> .		
DI heater	See temperature controls.		
DI inject	Injecting DI water into a nitride recirculation system to maintain concentration.		
dilute hydrofluoric acid	Dilute hydrofluoric acid (DHF). See chemical process.		
Dilution valving	Tank drain scheme that uses an aspirator (inline plumbing device) to dilute liquid draining from a tank. See aspirated drain.		
DIO	Discrete input/output. See I/O.		
DIP switch	Dual in-line package switch. Small switch used to set up or adjust equipment.		
dispersion plate	A plate located in a tank that prevents liquid from spraying as it fills the tank and prevents recirculating liquid from exiting tank too quickly. Also allows laminar flow of liquid across the wafers (bottom to top).		
disarm	Keyswitch position. See keyswitch.		
DMM	Digital multimeter.		

document control	Verteq's Document Control department is responsible for organizing the company's documents (primarily parts lists, manuals, and technical drawings) and managing the numerous and frequent changes made to these documents. One or more of the following forms are used, generally in the order listed, before manufacturing begins, and when changes to a document are needed (either during manufacturing or after shipping):
	1. Engineering Work Order (EWO) The EWO form is prepared by a project engineer <i>before</i> manufacturing begins. The EWO lists the parts and documents needed for the project, and provides authorization for production to begin.
	 Manufacturing Engineering Order (MEO) The MEO form is used to request and order a change to any document <i>during</i> manufacturing.
	 3. Engineering Change Request (ECR) The ECR form is used: to request a change to any document for a product, part, or assembly that has been shipped to the customer, and to request a change on a "stand-alone" document (one that is not related to a particular Verteq product).
	 Engineering Order (EO) The EO form is used to <i>order</i> (direct an employee to make) the change specified on an ECR, and explains the change needed.
	See the Document Control department for instructions on using these forms.
"dog house"	Plastic assembly covering the pillow block bearing above the swingarm.
dopant	Impurity added to semiconductor material to change or improve its ability to conduct electrical current.
doping	See diffusion process (preferred term).
DOS	Disk operating system.
DOT	U.S. Department of Transportation. Regulates transportation of chemicals and other substances for the protection of the public.
draining (heated tanks)	Heated tanks drain when 1) a "Main Tank is overfull" alarm occurs, and 2) the REFILL or DRAIN button on the tank control screen is selected. During a drain, the recirculation pump pulls liquid from both the inner tank and the outer weir. The pump starts when liquid falls below the tank's process level.

Typical Heated-Tank Draining Process

Cooling system specifications

- acid cooling system holds a minimum of 105% of total recirculation system volume
- two N₂ bubbler level sensors with operational interlocks (see table below)
- built-in coils circulate water for heat-exchange function
- gauge located in wet system module enables adjustment of cooling water inlet pressure (inlet pressure must not exceed 40 psi; flow ≅ 4 gpm)
- process tank volume cools 180°C to 70°C within 1 hour (based on 65°C cooling water)

One or multiple aspirators can be plumbed in parallel downstream of the acid cooling system. Each aspirator produces a specified dilution ratio (city water:process chemical), and cools the chemical.

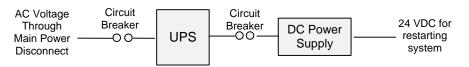
Automatic Interlocks for Heated-Tank Drains		
Interlock	Function of Interlock	
Cooling-tank overtemp	Acid cooling thermocouple interlock prevents the acid cooling drain valve from opening before desired drain temperature is achieved.	
City water flow	Allows the city water flow valve to open only when the acid cooling system drain valve is open.	
Drain overtemperature	Drain thermocouple downstream of the optional aspirator(s) shuts off acid cooling drain valve if temperature is too high.	
Acid cooling system levels	Full shuts off heated tank drain. Empty shuts off cooling tank drain.	

dryer	A device used to remove water from wafers. Common dryer types include IPA (isopropyl alcohol) dryer, SRD (spin rinser/dryer), and Marangoni dryer.

dummy load A resistive test device capable of absorbing power or matching a device's impedance. Used in testing device output.

<u>E</u>

ECR	Engineering Change Request. See document control.	
edge exclusion	The outside edge of the wafer, which is reserve for handling, if necessary. No circuit printing takes place in this area.	
EE	See robot end effector.	
EE wash tank	See end-effector wash tank.	
Emergency Action Plan	Designated actions employees and managers must take to ensure employee safety from fire and other emergencies.	
Emergency Off	See EMO.	
emergency modes	Wet systems have three emergency modes:	


Emergency Mode	Cause	System Response
EMO	 Fire Emergency Stop button pressed Exhaust Fail alarm 	See EMO
Robot E-STOP	 Robot E-STOP button pushed Safety shield opened with keyswitch at AUTO position Robot unable to move or to complete a move because of obstruction Internal error 	See Robot E-STOP
UPS	Main wet system power is lost	UPS engages. See GoToSafe.

EMO

Emergency Off (EMO). An EMO shutdown on a GFT wet system is caused by 1) pushing an Emergency Off pushbutton, 2) loss of exhaust, or 3) a fire.

During an EMO shutdown, electrical power is maintained through the UPS to a DC power supply, which provides a 24-VDC output. This voltage is necessary to restart the wet system. Recipes in progress cannot be resumed; product lots cannot be moved with the robot until the EMO condition is cleared.

EMO pushbuttons are red mushroom-type buttons located on both the front and back of wet systems. After an EMO button has been pushed, it must be manually pulled out before the wet system can be powered up.

Simplified schematic of electrical flow (left to right) after an EMO has occurred.

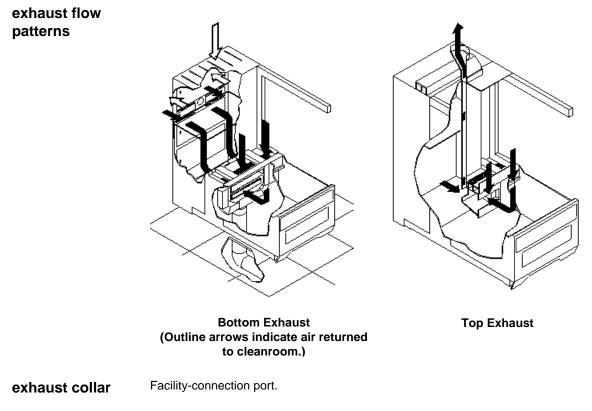
Responses to an EMO Shutdown		
Device or Function Response		
UPS (uninterruptible power supply)	UPS retains power, but supplies only 24-VDC to a restart circuit.	
Robot	Loses powerLoses home positionMust be rehomed before it is used again	
SRD (spin rinser/dryer)	Loses operating powerStops communicating with cell controller	
Automatic valves	All automatic valves go to default position	
External DI water heater	 Operating power to the DI heater is not interrupted Control and communication with heater are cut off Heating stops 	
External chemical tank heater/chiller	 Operating power to the heater/chiller is cut off Communication with VcS module stops Heating/chilling functions stop 	
Cell controller and touchscreen	Both lose power	
Recipes in progress	 Immediately stop Cannot be resumed Product lots cannot be moved with the robot until wet system is restarted 	
Electrical circuits	All circuits are disabled except 24-VDC startup circuit	

end effector (EE)	See robot end effector.	
end-effector (EE) wash tank	apparted) to provent contamination of the payt chemical both or the onin ringer/druer	
	EE Wash Tank Rules	EE Tank Sequence
	 Wash/dry before going to the input nest. (Wash is DI water; dry is N₂.) Wash/dry before going to the SRD. Wash if the next scheduled move is to a different chemical tank. Wash if the next scheduled tank has the same chemical <i>and</i> if the control system determines there is enough time to complete a sequence before the next scheduled move. 	 EE tank is full and idle before the end effector enters. Robot dips the end effector into the tank. Wash Time counter starts and the tank begins to overflow. Wash time ends. Drain Time cycle starts and the tank empties. This completes one wash cycle. The wash cycle repeats for the number of times set in Wash Cycles. Drain Time finishes. Dry Cycle starts for the amount of time set in N₂ Spray Time. Robot lowers into tank, then raises. The N₂ spray is on. Dry Cycle ends, then repeats for the number of times set in Dry Cycles. Robot raises end effector to carry height and pauses for the time set in Drip Time before executing the next scheduled step in the recipe. The bolded items above are individually configured in the EE Wash tank configuration screen.

end mounting

See wet-system mounting.

endurance testing


Testing performed on the wet system before shipping to the customer; involves operating the wet system in standard mode with the intention of processing 5,000 wafers with assists but no failures.

Engineering Change Request (ECR)	See document control.
Engineering Order (EO)	See document control.
Engineering Work Order (EWO)	See document control.
environment, product	See product environment.
EO	Engineering Order. See document control.
EPA	Equipment purchasing agreement.
Epitaxial Method	Method of growing an ingot of silicon by depositing crystals onto the seed from a gas.
EPROM	See erasable programmable read-only memory.
erasable programmable read-only memory (EPROM)	A read-only memory in which stored data can be erased and reprogrammed repeatedly.
ergonomics	The science or study of the evaluation, planning, and adapting of equipment and tasks to promote the comfort of the human body for the health and efficiency of workers.
error	Any deviation outside a specified tolerance range or value.
ESC	Escape. A selection on the touchscreen and external keyboards and on the touchscreen menus.
ESD	Electrostatic Discharge
E-STOP	See Robot E-STOP.
	Also see EMO.
etch	See etching.
etchant	The agent used to remove unwanted material from the product (etching). The most common etchants used in wet-chemical processing of semiconductors are mineral acids, particularly HF. By chemical action, the etchant removes all material that is not protected by resist.

etching	The process of removing (chemically dissolving) certain areas of layered materials on the wafer surface to leave the desired circuit pattern or to create the required thickness of the layer. Etch processes are typically named for the material being etched (for example, oxide etch and nitride etch). Etching is measured in Ångstrom units.
	Also see stripping.
etch rate	Rate at which the surface of a wafer is etched (measured in $\text{\ref{A}time}$, where time typically equals minutes).
ETFE	See Tefzel©
evaporation	Process where a metal capsule is heated in a chamber and becomes a vapor which solidifies as a metal film on exposed surfaces of semiconductor material. Also known as vapor deposition.
Evaporator Bell Jar	Chamber where the evaporation process occurs.
event	A detectable change in the condition of a system or equipment.
EWO	Engineering Work Order. See document control.
exhaust	Removal of gas, fumes, or vapor from the module.
	Also see local exhaust system; exhaust alarm and control systems; exhaust flow patterns.
exhaust alarm and control systems	Every module in GFT wet systems can trigger two exhaust alarms: low-exhaust and exhaust fail. Low-exhaust warns that a module's optimum exhaust velocity is lost and triggers an automated Runout response. Exhaust fail causes an EMO shutdown after an immediate GoToSafe and a configurable time delay. The delay allows recovery from a transient loss of exhaust flow without triggering an unnecessary EMO shutdown. Each of these exhaust alarms can be configured for different automated responses.
	Also see status beacon.

exhaust and airsupply options Three air-supply/exhaust options shall be available. A wet system can comprise modules that use different options.

Option	Hardware Used	Interlock Response
1	 Facility supplied air, air handlers, and filters 	• EMO – No control of air supply system. Standard EMO response.
	• Air handlers controlled by the facility	• Low Exhaust – Runout response after a 10-second time delay
		 Exhaust Fail – EMO is triggered after and immediate GoToSafe
		• Fire – EMO is triggered
2	Air supplied from remote constant- speed air handlers through ULPA	 EMO – Air handlers <i>do not</i> shut down or change speed. Air flow continues at current velocity.
	filters. These filters are assembled into filter plenum modules positioned over the wet system process area	Low Exhaust – Runout response after a 10-second time delay
	 0.12-micron filters with 99.9995% efficiency 	 Exhaust Fail – EMO is triggered after and immediate GoToSafe
	 Aluminum perimeter framing and protective grill on the downstream side of the filter modules 	 Fire – Air handlers shut down and an EMO is triggered
	Construction of 304, #4-finish stainless steel	
	 Flex duct interconnect between blower and ULPA air plenum modules supplied by GFT 	
3	 Same hardware as option 2, except air handlers are two-speed 	 Safety shield open – Two-speed air handlers adjust to a reduced velocity maintenance-mode, which conforms to OSHA fpm safety requirement (currently 150 fpm).
		• EMO – Two-speed air handlers adjust to a reduced velocity maintenance-mode.
		• Low Exhaust – Runout response after a 10-second time delay
		 Exhaust Fail – EMO is triggered after and immediate GoToSafe
		• Fire – Air handlers shut down; EMO is triggered

exhaustTwo options shall be available to monitor exhaust. Both can be used in the same
wet system on a module-by-module basis and in conjunction with any air-supply
option.optionsoption.

	Option 1: Pitot tube / photohelic gauge		Option 2: Photohelic only
•	One Pitot tube and photohelic for each module	•	Photohelic gauge, on the back of each module, shall indicate the
•	Devices measure velocity pressure (inches of water) of the exhaust stream		difference between the ambient pressure where it is located and the exhaust duct.
•	Tubing connecting the Pitot to photohelic gauge on the back of each module shall be installed by facility personnel at the time of system facilitation		

exposure A condition of being exposed, a position in relation to an unacceptable event, or an interaction between an employee and a hazard.

extender board A de-bugging printed circuit board used by service personnel to temporarily extend the length of the installed PCB for more convenient monitoring purposes.

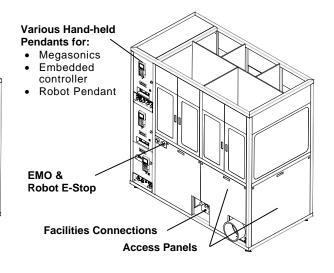
<u>F</u>

fab	Fabrication facility. See facility (preferred term).
facility	The customer's location; specifically, the site where wafers (or other product) are fabricated and the wet system is located. Also known as <i>fab</i> .
failure	Any interruption or variance from the specifications of equipment operation that requires the replacement of a component (other than specified consumables) because of degradation or failure. Also includes assists that interrupt operation and require more than 6 minutes. [From SEMATECH Official Dictionary, Rev. 5.0, 1995]
FARM	See filtered-acid recirculation module.
feedback	Electronic currents, coupled or directed from the circuit's output valve or amplitude back to the circuit that originated it. Normally used to control or compare.
FEM	Filtered etch module.
FEP	Fluorinated ethylene-propylene.
	Also see "Teflon."
filter bypass valve	See recirculation (heated tanks).
filtered-acid recirculation module (FARM)	A process module that has a chemical tank with an acid-recirculation system.
filtration	See recirculation (preferred term).
Fire Prevention Plan	Includes a list of major workplace fire hazards, procedures to control them, and the types of fire protection systems which can control potential fires.
fire-retardant polypropylene	FRPP.
fire suppression system	Typically uses CO ₂ and/or water. See wet-system specification for details of fire detection and suppression system.
FLA	See full load amps.
flammable liquid	A liquid having a flash point below 100°F (37.8°C).
flash point	The temperature at which a liquid will give off enough flammable vapor to ignite.

fluorinated	FEP.		
ethylene- propylene	Also see "Teflon."		
FNPT	Female national pipe thread.		
footprint	Physical dimensions (length and width) of a wet system.		
force	Each tank control screen has a Forced/UnForced button that allows the direct control of individual valves, pumps, spray bars, and drains. In normal operation these buttons remain in the UnForced (automatic) mode. With the Forced button on, valves can be opened and closed, recirculation pumps can be operated, and other components individually controlled.		
	Tank control screens are accessed by selecting their icons on the main screen. Displaying control screens is not a password-protected operation. However, forcing and macro command functions require password permission. A position in the password bit mask allows or denies operator permission to force wet- system components. This is a blanket permission, i.e., an operator may force any component on every control screen or force nothing at all.		
	The Forced function should be used only by trained technical personnel who have a thorough understanding of the wet-system operation. Also, it is extremely important to return the system to an UnForced condition before logging off or shutting down the control software.		
	To force a component:		
	1. Select a tank or device icon from the main screen.		
	Select the Forced/UnForced button on the displayed control screen. The button toggles between UnForced and Forced every time it is selected.		
	Select an ON/OFF or OPEN/CLOSED status box to toggle the status of a device such as a valve or pump.		
	 Not all devices have forced capabilities. 		
	 On some control screens, devices do not have status boxes. In these cases select the icon itself to toggle its status. 		
	When components are toggled to forced:		
	 Valves and other devices can be toggled ON/OFF or OPEN/CLOSED. 		
	 The device will remain in a forced state until toggled again. 		
	 Forcing overrides automatic control, preventing normal processing. 		
	forced The wet system main control screen shows when a tank is in a forced condition.		

fpm F

Feet per minute (unit of velocity).


front-access module	A module in which the plumbing and electrical compartments can only be accessed from the front.
front mounting	See wet-system mounting.
FRPP	Fire-retardant polypropylene.
FRS	Filter recirculation system.
	See recirculation
Fr	Resonant Frequency
frequency synthesizer PCB	Printed circuit board in GFT's E-style Megasonics electronics packages. Used to produce a signal at Fr of transducer crystals that will drive the amplifier allowing the system to produce energy inside the process tank.
full load amps (FLA)	The peak load power requirement for a wet system or device (measured in amps). The FLA for each wet system is indicated on a label attached to the rear of the wet system near the main power disconnect switch.

<u>G</u>

GaAs	Gallium arsenide.
Ge	Germanium.
GEM	Generic Equipment Model. SEMI International standard for communications and control of semiconductor equipment.
GEM Host-Cell Controller Interface	See GEM Specification.
general safety rules	General safe work practice rules adopted by GFT.
geometry	The critical dimensions (CDs) and shape of the end product, measured in microns (μ m).
GFI	Ground Fault Interrupter.
g/L	Grams per liter.
Goldfinger	The Goldfinger Cleaning System is a post-CMP single-wafer based processing system designed to accommodate non-contact cleaning to remove organic, ionic, and particulate contaminants after the mechanical polishing of a wafer. The system is constructed with standardized modules for flexibility and variety in cleaning. A system may be manufactured to include any selection of modules, depending upon the requirements of the user. It may be arranged around a robot (if equipped) or another system so that every module is

Status Beacon Input Module Touchscreen Front Panel Control Buttons Goldfinger & Robot Modules (inside)

accessible.

GoToSafe is an automated recovery sequence that ensures wafers are in, or moved into, GoToSafe safe tanks after a loss of main power to the wet system. GoToSafe is also response can be assigned to any alarm.

All GoToSafe responses have the features listed below.

- Audible and visual alarms
- New lots are not allowed until alarm is cleared ٠
- Alarm message displayed on touchscreen and written to log file ٠
- Lot is moved into or kept in a safe tank until problem is fixed ٠

The scenario table below describes variations on the main GoToSafe theme.

GoToSafe Scenarios		
	After Loss of Main Power	After an Alarm
Required Conditions	 Wet system has a powered-up UPS Robot is functional and not experiencing an error No obstruction, such as an open lid, prevents a robot move Robot completes any move in progress, including moving a cassette into a chemical tank 	 Alarm is configured for GoToSafe Robot is functional and not experiencing an error No obstruction, such as an open lid, prevents a robot move Robot completes any move in progress, including moving a cassette into a chemical tank, before starting GoToSafe
Lot is in Safe (DI Water) Tank	 Lot stays in safe tank Recipe is interrupted and cannot be resumed 	 Lot remains in safe tank Recipe timing function continues If alarm is cleared before next scheduled move, recipe continues without a GoToSafe response If alarm is <i>not</i> cleared before next scheduled move, lot stays in safe tank Recipe can be continued by selecting Resume in the Scheduler menu after alarm condition is cleared
Lot is in Chemical Tank	 Robot <i>immediately</i> moves lot into safe tank (unless an error prevents robot movement) Recipe in progress stops and cannot be resumed 	 Lot completes the chemical tank step Robot moves lot into safe tank Recipe timing function continues If alarm is <i>not</i> cleared before next scheduled move, lot stays in safe tank Recipe can be continued by selecting Resume in the Scheduler menu after alarm condition is cleared

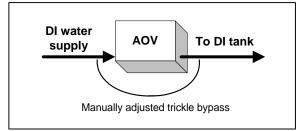
gpm

Gallons per minute.

gripper movement See robot axes.

<u>H</u>

H₂O	Water.
H ₂ O ₂	Hydrogen peroxide.
H₂SO₄	Sulfuric acid.
H₃PO₄	Phosphoric acid. Used in nitride strip baths.
"Halar"	Trademark for fluoropolymer (ECTFE) produced by Ausimont, USA, Inc.
"Halon"	Trade name for a compressed gas used in fire-suppression systems. Used in and around electronics because it is a gas. Consumes oxygen in a room. Is hazardous to humans.
hardware	The physical components or equipment that make up a computer or other system.
hazard	An unsafe condition or practice that could cause injury or illness to an employee. Hazards are preventable.
Hazard Communication Program	A written program designed to inform employees about hazardous chemicals and corresponding protective measures.
hazard control	Reducing the probability of accidents by eliminating hazards, reducing exposure to hazards, or protecting employees from hazards.
hazard identification	Noting the potential for accidents before they occur.
Hazcom	Hazard communication program.
H-bar	The narrow horizontal bar at one end of a wafer cassette (see photo). The vertical and horizontal reinforcing strips form an "H." H-bar orientation is extremely important for secure mating with the robot's end effector. Improper placement of cassette in the input queue can result in wafer damage.
	Also see cassette placement.
	H-bar wafer cassette


Cassette H-bar Location

HCI

Hydrochloric acid.

- **heater/chiller** Unit used t heat or cool fluids; typically used in chemical processing to control the temperature of a specific bath or tank.
 - Also see temperature controls.
- heating See temperature of process chemicals.
- HEPA High-efficiency particulate air filter.
- hertz (Hz) A unit of frequency equal to one cycle per second. Also known as cycles per second.
- **HF** Hydrofluoric acid. See chemical process.
- **HF last** If the HF-rinse combination is the last step before the wafers go into the dryer, the step is referred to as the *HF last*.

high/low flow plumbing (trickle bypass) DI water tanks fill at a high flow rate, then (to conserve water for the continuous overflow) change to a low flow rate when the tank has filled. During tank fills, an air-operated valve (AOV) opens automatically to provide high flow and fill the tank quickly. When the process level is reached, the AOV closes, but DI water continues flowing into the tank through a manually adjusted trickle bypass line.

High/Low DI Water Flow

HNO₃ Nitric acid.

home Mechanical location of the robot used as a reference position for the robot points. The robot must be homed (with the touchscreen or the robot joystick) each time the robot is powered up. When the robot is homing, if finds its home position for each axis, starting with the vertical axis and ending with the horizontal axis.

The robot's home position for each axis is not taught; it is permanently encoded in the robot control system.

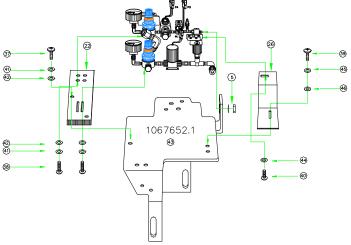
Also see robot points, robot axes, and robot control system.

hood See VLF hood. Hood is also an industry term for wet system (preferred term).

horizontal See obstruction sensor.

Herizontal obstruction concer. See obstruction conc

HOS Horizontal obstruction sensor. See obstruction sensor.


obstruction sensor (HOS)

host computer	 A remote computer (located at a distance from the wet system cell controller) that can: enter lots download recipes upload recipes request status communicate in numerous other ways with the cell controller A host computer does not disable or override system-mounted pushbuttons or operations manually initiated from the touchscreen interface. The GFT host/cell controller interface is GEM-compliant. See <i>GEM Specification</i>.
hot phos	Hot phosphoric acid. See chemical process.
HP	Hot phosphoric acid. See chemical process.
НРМ	Hydrochloric peroxide mixture. See chemical process.
Huang 1	See chemical process.
Huang 2	See chemical process.
hydrochloric peroxide mixture (HPM)	See chemical process.
hydrofluoric acid (HF)	See chemical process.
hydrogen peroxide	H ₂ O ₂ .
hydrophobic	Lacking an affinity for, repelling, or failing to absorb or adsorb water (in the wet- processing industry, typically refers to materials such as wafers or filters).
Hydrophilic	Having a strong affinity for, attracting, absorbing, or adsorbing water (in the wet- processing industry, typically refers to wafers or filters).
Hysteresis	[ELECTRICAL] An oscillator effect wherein a given value of an operation parameter may result in multiple values of output power of frequency.
	This is a setting used to control OMEGA-type overtemperature controllers in the protection of Lufran In-Line heaters. It is the percentage of span which the temperature must fall or rise before the time changes state.
Hz	See hertz.

IC	See integrated circuit.
icon	An image representing a function on a touchscreen display. Icons change color in real- time to represent real-time operational conditions. See touchscreen colors used in touchscreen displays.
idle	The device is powered and ready for use but is not in use (for example, a tank has reached the level and temperature for processing, but no wafers are currently being processed in the tank).
	Also see parked.
ILH	Inline heater. See temperature controls.
immersion heater	See temperature controls.
Impedance- matching transformer	A transformer used to match impedance between source and load. Required on all GFT Megasonic equipment.
implant	A method of semiconductor doping (adding impurities to an intrinsic material like silicon or germanium).
impurities	Materials used as dopants, e.g. boron, arsenic, and phosphorus. When these impurities are added to silicon or germanium they will produce P or N type materials.
incident	An unplanned, unwanted event that could or does degrade the efficiency of the business operation but does not include physical injury, illness, or property damage.
incident investigation	Inquiry to determine the root cause of an incident in order to prevent future incidents and accidents.
Ingots	The small piece left after a silicon crystal has been sliced into several wafers.
inline heater (ILH)	See temperature controls.
input/output (I/O)	Inputs are electrical signals from devices (such as the robot) that provide information about the status of the device to the cell controller or PLC. Outputs are electrical signals from the cell controller or PLC that turn devices on and off, open and close valves, and energize alarms, lights, and operator notifications.
	<i>Discrete I/O signals</i> are 24 VDC, which are either on or off. <i>Analog input signals</i> are 4 to 20 mA, which correspond to measured resistivity, flow, pressure, and temperature values. <i>Analog output signals</i> , also 4 to 20 mA, drive heating systems from 0 to 100% capacity (depending on demand determined by PID loops).
	Also see input/output module.

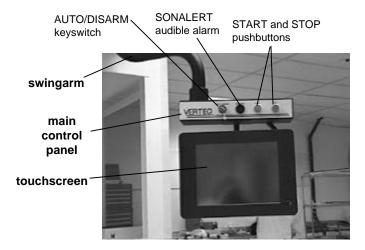
input/output (I/O) module	The module where the product enters and exits the wet system.
input/output (I/O) nest	See input/output queue (preferred term).
input/output (I/O) queue	Two or more sets of indented slots in the I/O module (module 1) for cassettes. Also known as I/O nest. (If the wet system has a WTU, the slots are for process cassettes only.)
insulator	A material or body that is a poor conductor of electricity.
integrated circuit (IC)	A complex electronic circuit fabricated on a substrate, usually a silicon chip.
interface	The connection between mechanical and/or electronic devices that allows them to function or pass information (data) back and forth between them (for example, the host/cell controller interface).
interlock	A device that prevents operation of a piece of equipment when an event exists. For example, an interlock causes the robot to stop when a safety shield is opened during processing.
ionic	Relating to, existing as, or characterized by means of ions.
I/O	See input/output.
I/O Interface PCB	Used in Megasonics E-style electronics packages to communicate CPU commands to the 24VDC output board.
IPA	See isopropyl alcohol.
IPA dryer	Dryers that use isopropyl alcohol (IPA) to remove water from the surfaces of wafers and similar substrates.
IPB	Isometric Parts Breakdown, or Indented Parts BOM. Assembly instruction drawings used by the manufacturer and maintenance personnel. See below for an example:

I

Ironman	A program used to test equipment around the clock to identify and correct causes of failure. GFT uses endurance testing rather than Ironman testing.
island mounting	See wet-system mounting.
IsoDRY	GFT's IPA Vapor Drying System (generic term)
isopropyl alcohol (IPA)	CH ₃ CHOHCH ₃ . Also known as 2-Propanol.
isopropyl alcohol dryer	See IPA dryer.

<u>J</u>

joystick

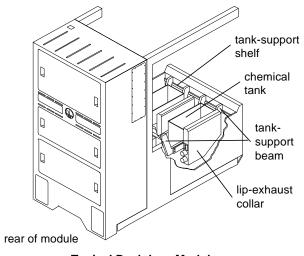

See robot joystick.

<u>K</u>

k (kilo-) One thousand.

keyboard (external)
 Typically located in the input module, this keyboard can be used to enter data and respond to touchscreen prompts. This keyboard is less convenient than the keyboards displayed on the touchscreen and is not normally used for wafer processing. The external keyboard, not the touchscreen keyboard, is used to install the wet system software.

keyswitch Two-position AUTO/DISARM switch located on the main control panel. For normal wetsystem operations the keyswitch is kept in the AUTO position. When the keyswitch is turned to the DISARM position, the safety shields can be opened without causing a robot E-STOP. *This is a safety override that must be used with great caution.*


Operator Interface Assembly

Features and Interlocks when keyswitch is at DISARM	
Status Beacon	Interlocks
	 A safety shield can be opened without causing an E-STOP.
	Yellow light on the status beacon flashes.
red —	Robot will complete a move in progress but will not reapport to any automatic commands until the leavenite
yellow —	respond to any automatic commands until the keyswitch is moved back to AUTO.
green	 The robot will not respond to manual and joystick commands unless 1) the logged-on operator has special password permission to override this interlock and 2) a touchscreen prompt is acknowledged.
	 Exhaust flow will increase (for systems with exhaust control systems).
	New lots cannot be entered.

- kilohertz (kHz) A unit of frequency equal to 1,000 hertz.
- **kinematics** Study of motion without regard for masses or forces.
- KOH Potassium hydroxide.

<u>L</u>

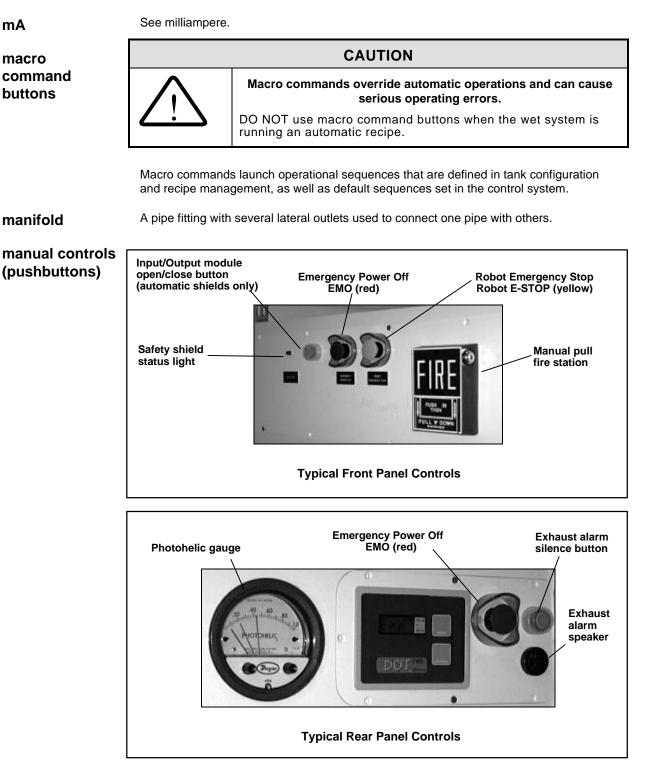
Labyrinth Seal Plate	Disc-shaped plate made of polypro material. Filtered nitrogen gas flows through small holes in the plate, forming a gaseous barrier that seals the bowl from outside contaminants and keeping air and water in the bowl from escaping.
laminar flow	Flow of liquid or gases in a smooth pattern without turbulence.
LCD	Liquid crystal display.
LED	Light-emitting diode.
Li	Lithium.
Lid	Pneumatically operated cover used on heated tanks. Lids open and close automatically during processing. Lids can also be opened manually when the tanks are not allocated by using the forcing or macro-command functions on the applicable tank control screen. Major lid safety interlocks include:
	 lid cannot be opened or closed manually at any time during an automatic recipe, even if the tank is empty lid will not open if the robot is moving toward it robot will not deliver product lots into a tank if its lid is not fully open.
	A lid can be configured to remain open during processing and to close at specified temperature conditions. See tank configuration.
	In semi-automated systems (in which the robot does not let go of cassettes during processing), an offset robot arm allows the effector to stay in the tank with the lid closed.
light point defect (LPD)	A feature (pit, particle, or peak) on a wafer's surface that causes light to be scattered from measurement tools that look for surface imperfections.
light tree	See status beacon (preferred term).
lip-exhaust collar	A mechanical structure mounted on the right and left sides of a chemical tank to create a local exhaust system. The lip exhaust system captures fumes from the process tank and draws them at an accelerated rate into the exhaust stream for removal from the module. The process localizes the chemical vapor and minimizes contamination of other components. When a lip-exhaust collar is present, a "deckless" system (a local exhaust system without a decktop) can be used.
	Also see for exhaust flow patterns.

Typical Deck-less Module (with local exhaust system)

lithium	Li.
Lithographic	A method of defining semiconductor patterns on wafers by use of a thin film of resistant material.
Load	Transducer.
local- and remote-mode operation	The wet system operates in either local or remote mode. The wet-system control system boots up in local mode, but remote-mode operation can be selected in the touchscreen Operations menu. Mode selection is a password-protected operation. In local mode, the wet system is controlled entirely through the touchscreen and external keyboard.
	In remote-mode operation, the wet system is partially controlled through a host computer, which can:
	 enter product lot IDs and select recipes monitor real-time touchscreen displays and log system events in automatically generated files receive "lot complete" messages add new recipes to control software
	The wet system can be operated in only one mode at a time. Both local- and remote- mode processing typically involve a floor operator. In remote mode, the host-computer operator enters product lot IDs and recipes through the host computer; the floor operator monitors the process, acknowledges touchscreen prompts, and loads and unloads product lots.
	Remote-mode operation requires a SEMATECH SECS-II compatible program on the host computer. For technical specifications, refer to SECS-II Host-Cell Controller Interface.
local exhaust system	An exhaust system that captures contaminants at or near their source for removal from the module.
	Also see lip-exhaust collar; decktop.
local mode	See local- and remote-mode operation.

lockout box	Mechanical box or device used as a safety precaution to prohibit a system being powered on by someone other than the service personnel.
Lockout / tag Program	A program to protect employees from injury caused by the unexpected energization or startup of equipment or the unexpected release of stored energy.
lot	See product lot.
lot threading	Concurrent processing of multiple product lots. Automated wet systems have the lot- threading capability; manual and semi-automated wet systems do not.
	Also see automated wet system; semi-automated wet system; manual wet system.
LPD	See light point defect.
lpm	Liters per minute (gpm x 3.786 = lpm).
LS byte	Least Significant Byte
LSI	Large Scale Integration

Μ

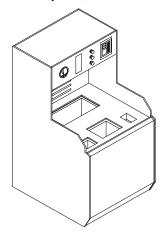

Meter. Also stands for milli, a prefix for one-thousandth.

m

mΑ

macro command buttons

manifold

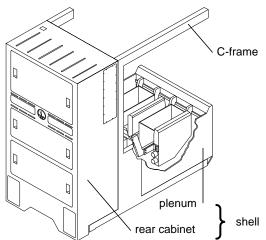

manual fill Requires an operator to pour chemical directly into a wet-system tank.

Also see bulk fill.

manual wet system (MWS) Manual wet systems have the following features and capabilities:

- Manual wet systems are operated entirely by an operator. They have no robot or other independent automatic control systems. They may contain a touchscreen and a cell controller.
- The operator times the processes and transfers cassettes from one process to another.
- Tanks are arranged either end to end or in a front-to-rear arrangement.
- The product lot begins in a dry state and ends in a wet state. The wet system has **no** dry in-dry out capability (the operator removes the cassette from the final rinse tank and transfers it to the spin rinser/dryer (SRD) as the final processing step).
- Only one product lot is processed at a time. The operator transfers cassettes through all processing steps.

Also see wet system; automated wet system; semi-automated wet system.



Typical Manual Module

Manufacturing Engineering Order (MEO)	See document control.
manufacturing	A computerized system of controls and planning techniques for all of manufacturing.
resource planning II (MRPII)	Also see material requirements planning.
Marangoni dryer	A drying technique that uses isopropyl alcohol (IPA) and the surface tension of DI water to dry wafers.
mask	A thin sheet of metal foil perforated with holes, used to protect specific areas of the product during a deposition process.
	Also see photomask; etching.

material requirements planning (MRP)	A computerized planning system used by manufacturing for production control. MRP is one part of a larger manufacturing resource planning system, manufacturing resource planning II (MRPII).	
material safety data sheet (MSDS)	The primary written means of conveying information concerning chemical hazards. Includes information on the properties and hazards of the chemical.	
Max Metering Pump Count	The pump counter tracks the pump's operational cycles. Trebor pumps use a pressure sensor, mounted on the pump's exhaust side, to sense the movement of the pump bellows. Iwaki pumps use a proximity sensor to sense the pump's strokes.	
MCS	See megasonic cleaning system.	
megahertz (MHz)	A unit of frequency equal to 1,000,000 hertz.	
megasonic cleaning system (MCS)	The cleaning system inside a process tank that uses the action of megasonic waves to force particles off wafers (or other substrates). Also known as megasonics.	
	The system cleans by vibrating a transducer crystal at its resonant frequency, which generates waves of sonic energy through a liquid solution. The high-energy waves repeatedly strike both sides of the wafers immersed in the cleaning solution. Liquid diffuses between particle and device and acts as a wedge, lifting particles and suspending them in the cleaning solution.	
	The system cleans with no moving parts. The quartz lens disperses high-frequency energy through the cleaning solution and across the face of the wafers, making chain drive, stepper motor, and other transport systems unnecessary.	
megasonics	See megasonic cleaning system.	
megohm (W)	A unit of resistance equal to 1,000,000 ohms.	
menu	Options displayed on a screen.	
MEO	Manufacturing Engineering Order. See document control.	
metallic element	An element that is distinguished from a nonmetallic one by its iridescent and reflective properties, malleability, ability to conduct electricity, and ability to form positive ions.	
metallurgical fabrication	The fabrication of semiconductors, employing the science and technology of metals as conductors.	
metering	See metering pump.	
metering pump	A metering pump is used in the wet system for two purposes: (1) to release a specified amount of chemical into a chemical bath during initial fill (<i>metering</i>), and (2) to add a specified amount of chemical to the chemical bath to maintain chemical concentration during processing (<i>spiking</i>).	
mho (u)	A unit of electrical conductance. Reciprocal of ohm.	

MHz	See megahertz.		
micron (μ)	Unit of length equal to one millionth of a meter (10^{-6} m) , one thousandth of a millimeter, and 0.000039 inch. Used for measuring size of particles. Also known as <i>micrometer</i> (µm).		
milliampere	A unit of current equal to one-thousandth of an ampere (10 ⁻³ ampere). Abbreviated mA or milliamp.		
mini- environment	An enclosed-system process environment that has controlled temperature, relative humidity, differential pressure, and exhaust flow.		
	Also see local exhaust system; exhaust alarm and control systems; exhaust flow patterns.		
MIS	Management information system.		
MK Safe	Make Safe		
mm	Millimeter. To convert millimeters to inches, multiply by 0.0394.		
MNPT	Male national pipe tread.		
module	A group of interconnected wet-system devices that perform a process unit-operation (for example, an SRD module spins, rinses, and dries wafers). Several modules are connected to form a complete wet system.		
	A typical module (see drawing) is composed of a shell (rear cabinet plus plenum), C-frame, and internal equipment associated with the specific module.		
	Also see process module.		
	C trans		

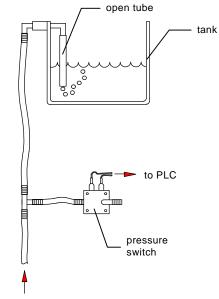
Typical Module

module, frontSee front-access module.access

module, process	See process module.	
module, rear access	See rear-access module.	
monitor wafer	A control wafer used as a starting foundation.	
mounting, robot	See robot mounting.	
mounting, wet- system	See wet-system mounting.	
mouse	Used for the <i>optional</i> screen editor utility, and in the timing diagram in recipe management for VcS wet systems.	
MRP	See material requirements planning.	
MRPII	See manufacturing resource planning II.	
MS	Magnetic switch.	
MS Byte	Most Significant Byte	
MSDS	See material safety data sheet.	
МТВА	Mean time between assists.	
MTBF	Mean time between failures.	
MTTR	Mean time to repair.	
MV2	Metering Valve number 2	
MWS	See manual wet system.	
MWSF	Manual wet system, front access.	
MWSR	Manual wet system, rear access.	

<u>N</u>

 N_2


See nitrogen gas.

N₂ bubbler level sensors

The device that senses liquid level in a tank (see drawing).

The N₂ bubbler senses liquid level in the following manner: The pressure switch monitors the pressure differential (ΔP) between the hydrostatic fluid pressure in the tank and the ambient atmospheric pressure in the plenum.

When fluid covers the open end of the tube, the switch senses backpressure of the fluid and closes. If the fluid is not present, there is no backpressure and the switch opens.

N₂ from regulator

N₂ Bubbler Level Sensing

Sample Configuration

Available Level Sensors and Functions

EMPTY LEVEL

- Used in PLC logic drain sequence
- Used for hardware interlock for external heater/chiller
- Needed for every type of chemical tank (not QDR's or VcS tanks)

LOW LEVEL

- Used for hardware interlock for Megasonic transducer (chemical or QDR tanks)
- Used for hardware interlock for quartz tank blanket heater

PROCESS LEVEL

- Minimal level for *wafer coverage*
- Used for software interlock for recirc pump
- Used for software interlock for in-line heater (including external heater/chiller); in-line heater hardware interlock is capacitance sensor in recirc fluid path
- Combined with LOW LEVEL in static quartz tank to cover wafers and blanket heater

FILL LEVEL

- Used with *bulkfill* in PLC logic prep sequence (also used for manual pour systems)
- Used as topoff level (for DI or chemical)

MAX LEVEL

• Used only with *HF concentration* monitoring & control

HIGH LEVEL

- Used as *overfill* level alarm condition
- Used with every type of chemical tank (not QDR's or VcS tanks)

Level Sensors Baseline Configurations		
Process Tank Type	Levels Used	
 APM with: Bulkfill Recirc Megasonic 0°C to 100°C PVDF 	Empty Low Process Fill High	
 HF with: Bulkfill Recirc Concentration Monitor 0°C to 100°C PVDF 	Empty Process Fill Max High	
 HP or SPM with: Bulkfill Recirc High Temperature >100°C Quartz 	Empty Low Process Fill High	
 HP or SPM with: Bulkfill Static High Temperature >100°C Quartz 	Empty Low (can serve as Process Level if using only four levels) Fill High	
QDR with: • Megasonic	Low Process	

N ₂ Flowmeter	Cylindrical-shaped device with a metal bead inside that moves on a graduated scale.		
N ₂ O	Nitrous oxide.		
NaCl	Sodium chloride.		
NAK	Information has been received but is incorrect.		
NAN	Nano strip. See chemical process.		
nano strip	See chemical process.		
NaOH	Sodium hydroxide.		
native oxide	Thin oxide layer grown during wafer processing.		
native oxide etch (NOE)	See chemical process.		
NEC	National Electrical Code.		
nest, product	See product nest.		
NFPA	National Fire Protection Association.		
NH ₃	Ammonia.		
NH₄CI	Ammonium chloride.		
NH₄F	Ammonium fluoride.		
NH₄OH	Ammonium hydroxide.		
$NH_4S_2O_2$	Ammonium persulfate.		
NIOSH	National Institute for Occupational Safety and Health.		
nitric acid	HNO ₃ .		
nitride	Compound of metal with nitrogen; formed by passing nitrogen over heated metal. Used in semiconductors to cause hardening or to form insulating layers.		
nitride etch	Chemical process that removes part of the nitride layer on a wafer. This process uses the same chemistries as nitride strip, but for shorter process times. See chemical process.		
nitride strip	Chemical process that removes all of the nitride layer on a wafer. See chemical process.		
	Also see temperature control for nitride-strip processes.		

nitrogen gas (N₂)	A very clean inert gas.
nitrous oxide	N ₂ O.
NOE	Native oxide etch. See chemical process.
NOSPR (SRD)	Number of steps per recipe.
NPP	Natural polypropylene.
NVR	Nonvolatile residue.

<u>O</u>

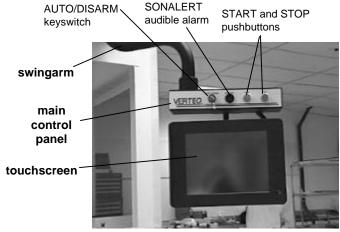
O₂ Oxygen.

O₃ Ozone.

obstruction sensor (OS) A sensor on the robot arm that detects an object in the robot's path (when the object touches the arm), and stops the robot. The obstruction sensor, which is wired in series with the robot E-STOP circuit, helps assure that robot operation is safe.

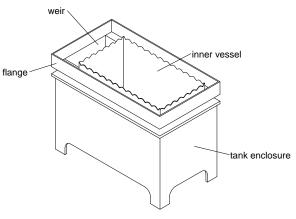
Types of obstruction sensors include:

- vertical obstruction sensor (VOS), which detects objects in the robot's vertical path,
- *horizontal obstruction sensor (HOS)*, which detects objects in the robot's horizontal path, and
- obstruction sensor (OS), which detects objects in both the vertical and horizontal path of the robot.
- **OEM** Original Equipment Manufacturer.
- OFA Oil Free Air.


controls

- **OFR** Overflow rinse. See chemical process.
- ohm (W) A unit of electrical resistance.
- OIA See operator interface assembly.
- operator See operator interface assembly.

Operator The main operator controls on a typical wet system are located on the operator interface assembly.


assembly (OIA) The operator interface assembly usually includes the *main control panel* (with keyswitch, audible alarm, and start and stop pushbuttons), and the *touchscreen* (see photo).

Also see interface; other operator controls: EMO, robot joystick, keyboard (external), mouse, and Robot E-STOP.

operator interface panel (OIP)	See operator interface assembly (OIA).		
operator interface touchscreen	See touchscreen (preferred term).		
opto-isolator	A solid-state relay with no moving parts; a light-emitting diode focused at the base of the photo transistor to control current flow.		
organics	Chemical compounds based on carbon rings or chains and containing hydrogen.		
organics strip	A chemical process used to strip organics.		
OR-OSHA	Oregon Occupational Safety and Health Administration.		
os	See obstruction sensor.		
oscilloscope	Electronic test device used to display voltage vs. time, signals, or waveforms for identification and accuracy		
OSHA	U.S. Occupational Safety and Health Administration.		
от	Overtemperature controller.		
overflow	Liquid that flows over the top of a tank.		
	 In a chemical tank, the liquid flows over the top of the inner vessel into the weir (see drawing). <i>Input overflow</i> occurs when a loaded cassette is placed in the tank. <i>Recirculation overflow</i> occurs during normal recirculation. In a rinse tank, the liquid flows over the top of the tank directly into the plenum. The durations of pre-, process-, and post-overflow for a rinse tank are set in the recipe 		

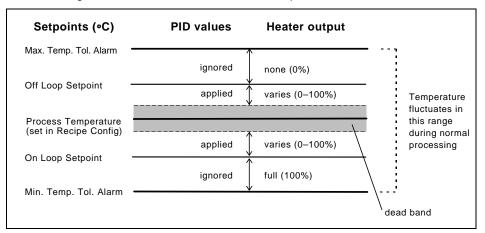
configuration.
Rinse tanks can be equipped with high-and low-flow rates. High flow is used in filling the tank; low flow is used to conserve DI water after the tank is filled.

Chemical Tank (showing weir)

overflow rinse (OFR)	DI water is added to the tank at the bottom in a single-pass rinse until it runs over the edge of the tank and into the plenum. No megasonics and no quick dumps are involved.	
	Also see overflow; chemical process.	
overtravel switch(es)	Switches located on the far ends of each robot axis rail. When contacted by the robot, the robot stops moving.	
oxidation	A reaction with oxygen that forms an oxide, such as nitrous oxide (N ₂ O), carbon dioxide (CO ₂), or silicon dioxide (SiO ₂).	
oxide	Binary compound of oxygen.	
oxide etch	See etching; chemical process.	
oxide layer	A layer of oxide on or in the wafer.	
oxygen	O ₂ .	
ozone	O ₃ .	

<u>P</u>

PAN	Phosphoric acetic nitric etch. See chemical process.	
parked	 A device is powered but is not ready for use, and all physical movement is stopped (for example, a tank is powered but is not prepped, and no wafers are currently being processed in the tank). Robot is raised to the carry height and is not moving. 	
particle	An unwanted impurity that contaminates the wafer's surface.	
particle count	The number of particles in a particular location in the cleanroom or on the wafer.	
	Also see cleanroom classification.	
РСВ	Printed circuit board.	
PEC	Process enhanced cassette.	
	Also see cassette.	
PEEK	Polyetheretherketone.	
PEL	Permissible exposure limit.	
perfluoroalkoxy (PFA)	See "Teflon."	
personal protective equipment (PPE)	Equipment such as goggles, gloves, and respirators that are necessary to protect employees from hazards.	
PFA	Perfluoroalkoxy. See "Teflon."	
рН	The scale (0-14) used to measure acidity and alkalinity. (<7 = acidity; 7 = neutral; >7 = alkalinity)	
phos	Hot phosphoric acid. See chemical process.	
phosphoric acetic nitric etch (PAN)	See chemical process.	
phosphoric acid	See H ₃ PO ₄ .	
photolithogra- phy	The process in which a thin layer of photographic chemicals (photoresist) is applied to the surface of a semiconductor substrate. A pattern is optically reproduced on film and transferred from the film to the wafer, later becoming the physical circuits.	


photomask	A film or glass negative or positive used as a template for projecting an image onto a substrate. Light patterns projected through this mask onto the substrate produce subtle changes which, when exposed to specific chemicals, corrode and are washed away, leaving layers of metal that form electronic circuits.	
photoprocess	A process that uses light to cause a chemical reaction.	
photoresist	The light-sensitive, organic material deposited on the wafer surface during photoprocessing, certain portions of which may be dissolved after exposure to light to form a patterned mask.	
PID parameter	Proportional-integral-derivative (PID) control systems. Also see scaling factors.	
setup	NOTE	
	Conventional PID control systems include p roportional, i ntegral, and d erivative functions. GFT uses a modified PID control system, which includes <i>only</i> the proportional and integral functions. However, GFT documentation uses the full acronym, PID, because it is commonly recognized in manufacturing industries.	
	The temperature in process tanks is controlled by a proportional-integral loop within the PLC program.	
	The PID Parameter screen defines the default values for controlling process temperatures. The values entered are used by the PID in a mathematical formula that determines an output value . The output value is a combination of:	
	 error (proportional value of the actual temperature relative to the process-temperature setpoint) and integral (accumulation of the error over time). 	
	This output value, derived from the mathematical formula is used in one of two ways:	
	Standard PID loop	
	Inverse PID loop	
	Max Integral $(1-100)$ 60Min Integral $(1-100)$ 20Integral Time (0.1 sec) 45Integral Value5Proportional Gain1On Loop Setpoint (°C) 0.20 Off Loop Setpoint (°C) 0.50 Dead Band $(+/-°C)$ Min. Temp. Tol. Alarm 5.00 Max. Temp. Tol. Alarm 5.00 DONEESC	
	Standard PID Loop	

Standard PID Loop

The output value, through the PLC program, is converted to a control signal which drives the heater from 0 to 100% capacity, depending upon how close the current temperature is to the process-temperature setpoint. The process temperature (set in recipe configuration) is monitored and reported to the PID in real time, from a scaled input.

Inverse PID Loop

In this approach, used in nitride-etch processes, the heater is fully off when the tank content temperature is at or above the recipe setpoint. When the temperature of tank contents drops below the process setpoint, the heater comes on at 100%. The output value is subtracted from the whole integer **1** (1 - (output value) = the inverse output value). This inverse value, through the PLC program, is converted to a control signal which drives the DI inject devices to maintain the process temperature. The process temperature is monitored and reported to the PID in real time, from a scaled input. (Also see *temperature control for static-bath nitride-strip processes*.)

The remaining PID discussion is true for both PID loop versions.

PID-loop adjustments minimize over- and under heating to help stabilize tank temperature as rapidly as possible.

PID Parameters are described below:

Max Integral/Min Integral is used in calculations to determine the heater's reaction speed to PID outputs. The default values shown are usually adequate for tank heating and should be changed only by qualified personnel with an understanding of PID operation (see "Tips" below).

Integral Time is the time period at which the PID makes temperature corrections. When the current temperature is within the deadband range, no significant corrections take place. In the setup screen example shown above, the PID will make temperature corrections every 4.5 seconds. (Note that the Integral Time shown on the PID Setup screen is 45, which is equivalent to 4.5 seconds. To convert integral time into seconds, multiply the value for Integral Time as shown on the PID Setup screen by 0.1; in this example, $45 \times 0.1 = 4.5$ seconds).

Integral Value is the amount the PID output value is adjusted at each temperature correction when it is measuring temperatures between the On Loop and Off Loop setpoints (excluding the dead band).

Proportional Gain is a sensitivity factor used in the PID calculation. The Proportional Gain value is set at the factory and fine-tuned during on-site installation. It should not require adjustment unless the heater is replaced or the system is modified.

On Loop Setpoint. Below this temperature, the heater comes on at 100% output and the PID values are ignored.

Off Loop Setpoint. Above this temperature, the heater's output is 0% and the PID values are ignored.

NOTE

Between On Loop Setpoint and Off Loop Setpoint, the PID values are used to proportionally adjust the heater output, or for the Inverse PID loop, DI water inject.

Dead Band is the range of plus and minus values around the process temperature in which the PID makes no changes to the heater (or DI water inject) output.

Rcp. Tolerance (recipe tolerance). This parameter is used only on PID setups for staging tanks. This temperature of chemical in a staging tank must be at the chemical tank's process temperature, plus or minus the Rcp.Tolerance value (±°C), before it can be released to the process tank.

NOTE

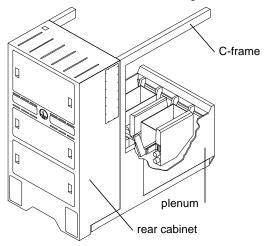
The Min./Max. Temp. Tol. Alarm must be greater than the Temperature Tolerance parameters set in recipe management. For example, if the Temperature Tolerance is set at 5° C, and the PID Min./Max. Temp. Tol. Alarm is set at $<5^{\circ}$ C, a temperature error can occur even when the temperature of tank contents is within the recipe's allowable range.

Min./Max. Temp. Tol. Alarm is the allowable range in which the temperature can fluctuate without causing an alarm. In the example shown above, an error is generated if the temperature is 5°C above or below the process temperature. This function becomes operable *after* the process temperature is initially reached, to prevent unnecessary errors during startup.

Typical PID settings

These values are typically set at the factory before on-site installation adjustments.

Parameter	DHF Tank	HP Tanks	APM Tank
Max Integral (1-100)	80	80	80
Min Integral (1-100)	20	20	20
Integral Time (0.1 sec)	150	250	250
Integral Value	2	10	10
Proportional Gain	100	2	2
On Loop Setpoint (C)	0.30	2.50	2.50
Off Loop Setpoint (C)	0.20	0.50	0.50
Dead Band (C)	0.20	0.50	0.50
Min. Temp. Tol. Alarm	0.50	3.00	3.00
Max. Temp. Tol. Alarm	0.50	3.00	3.00


Tips for Setting PID Parameters

The typical values should be adequate for initial chemical testing. Proportional Gain and Integral Time are usually the only values that need adjustment. In general, when configuring process temperature, measure the actual temperature over time to understand the physical limitations of the environment. If adjustments are needed, change only one parameter at a time. Slight changes may have large effects over long periods of time. It is a bad idea to change too many parameters in a short time span.

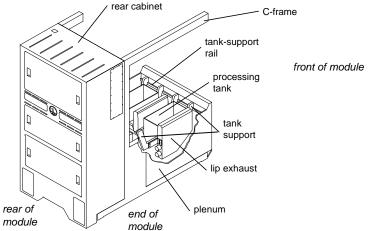
Proportional Gain: A value of one (1) is usually adequate for all tanks. To increase PID reaction time, increase this value by one whole number at a time and observe the response. A slow-acting PID works best with low- to high-temperature recipes.

Integral Time: Values between 45 and 60 (4.5 to 6 seconds) cause slow integral control. Adjustments to Integral Time are the best way to narrow the temperature's oscillation around the process temperature.

- piranha strip See chemical process.
- **PLC** Programmable logic controller. Controls individual devices (valves, pumps, process monitoring equipment) through input/output signals; provides timing and counting for process controls; and provides real-time information to the cell controller.
- **plenum** The area of the module around and beneath the process tanks or process plumbing. Sometimes refers to the floor of the module. See drawing.

plenum float A level indicator inside the plenum that detects liquid height or volume.

PM Preventive maintenance.

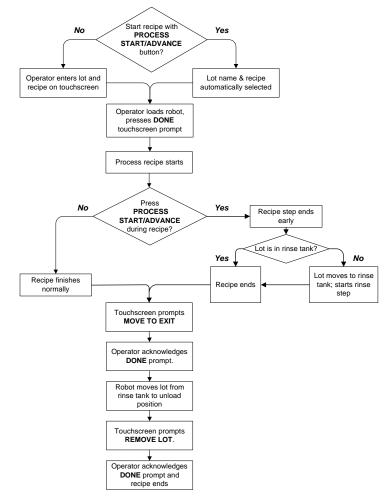

PMs Particle monitors.

polypropylene A hard, resinous material that resists moisture, oils, and solvents and can withstand temperatures up to 170°C. Transport cassettes and the wet-system shell are typically made of polypropylene.

polytetrafluoroe	PTFE.
thylene	Also see "Teflon."
port	An opening, such as the QDR drain port.

postmetallic strip	A chemical process that removes excess metals after a metal-deposition process.
potassium hydroxide	КОН.
POU, POUG	Point of use, point-of-use generator.
pounds per square inch absolute (psia)	Pressure measurement that utilizes a complete vacuum as a reference, or zero point.
pounds per square inch differential (psid)	The difference in pressure between two points in a fluid-flow system, measured in pounds per square inch.
pounds per square inch gauge (psig)	Pressure measurement that utilizes ambient (surrounding) pressure as a reference, or zero point. Ambient pressure is 14.7 psia, which would be 0 psig.
power tune	Function performed in Megasonic applications where algorithmic power table is written in addresses of battery-backed RAM.
PP	Peak to peak
ppb	Parts per billion.
PPE	See personal protective equipment.
PPID	Recipe number
ppm	Parts per million.
ppt	Parts per trillion.
prediffusion clean	A cleaning process that cleans the wafers before the diffusion process is performed. Typical cleaning agents are SPM, DHF, APM, and HPM.
PREP	Prepare. A selection on the touchscreen that automatically prepares tanks (fill level, temperature, and related process conditions) and other devices for processing wafer lots.
pressure, differential	See differential pressure.
process, processing	 (noun) In semiconductor manufacturing, any series of operations used to strip, etch, clean, rinse, and dry the product (typically silicon wafers) by moving it through chemical baths, DI-water rinses, and drying cycles. (verb) To perform the series of operations listed in no. 1.
	Also see wet processing; chemical process; rinse process.

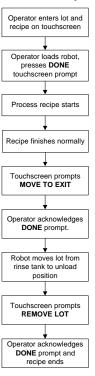
process area	See cleanroom, bay-and-chase.
process bath	See chemical bath (preferred term).
process cassette	See cassette.
process chemical	The chemical used during chemical processing. Some typical process chemicals include hydrofluoric acid (HF), hydrochloric acid (HCI), and nitric acid (HNO3).
	Also see rinse chemical.
process enclosure	The enclosure around the process modules. This enclosure isolates the process environment from the operators and core (gray areas) of the cleanroom.
process environment	The environment inside the wet system where the wafers are processed (stripped, etched, cleaned, rinsed, and dried).
	Also see product environment.
process liquid	See chemical.
process module	A module in which the product is chemically processed and rinsed.
	<pre>/ rear cabinet</pre>



process start/advance pushbutton Optional pushbutton used on some semi-automated system. When pushed during an automated recipe, the step in progress finishes and the recipe advances to the next scheduled step. See operational sequences below for details.

Operational Sequences

Detailed flow charts and explanations of operational sequences for various wet system configurations. Specific operational sequences and associated control features are discussed below.


- Systems with PROCESS START/ADVANCE Button
- Systems without PROCESS START/ADVANCE Button
- Systems with In-Process Wafer View Capability

Semi-automated Wet Systems with PROCESS START/ADVANCE Button Operational Sequence

Semi-automated Wet Systems *with* (PROCESS START/ADVANCE Button) Control Features

Control Feature	Function	
Touchscreen DONE prompt	Must be acknowledged to proceed to the next step. Operator may:	
	press the manual go button or	
	select DONE on the touchscreen.	
PROCESS START/ADVANCE button	 Starts a recipe (automatically names lot and selects last recipe run). Interrupts a step in progress and skips to the next step. Acknowledges a touchscreen DONE prompt. 	
Indicator light on control assembly	 Flashes when DONE is displayed on touchscreen. Steady illumination during a step in progress. 	
NOTE: Systems may be configured to end a recipe by acknowledging the MOVE TO EXIT prompt, bypassing the last REMOVE LOT prompt.		

Semi-automated Wet Systems *without* PROCESS START/ADVANCE Button Operational Sequence

Semi-automated Wet Systems without PROCESS START/ADVANCE Button

Control Feature	Function	
Touchscreen DONE prompt	Must be acknowledged to proceed to the next step.	
Indicator light on control assembly	Flashes when DONE is displayed on touchscreen.Steady illumination during a step in progress.	
NOTE: Systems may be configured to end a recipe by acknowledging the MOVE TO EXIT prompt, bypassing the last REMOVE LOT prompt.		

Semi-automated Wet Systems with In-Process Wafer View Capability Operational Sequence

Operational Sequence (In-Process Wafer View)

- 1. Robot agitates wafers (moves vertically in and out) in rear tank for length of time set in P1.
- 2. Before P1 times out, operator is alerted that P1 is about to expire.
- 3. When P1 times out, robot raises above rear tank and pauses for operator to visually inspect wafers. The next step is operator-dependent (see following table).

If operator selects P3:	If operator <i>does not</i> select P3 within preset time (Prompt Timeout):		
 robot moves back into rear tank for P3 when P3 finishes, robot moves wafers into front tank 	 robot moves back into rear tank for time set in P2 when P2 finishes, robot raises above rear tank and pauses for visual inspection of wafers this sequence repeats until operator selects P3 		

Configurable Recipe Timing Parameters

Tank Configuration Menu

Prompt Timeout: Length of time robot pauses above tank 1 for wafer inspection. If operator does not select P3, P2 occurs after this timeout. This automatic P2 selection repeats until the operator selects P3.

P1 End Warning: Time when a notification alerts operator that PI is about to finish.

Recipe Configuration Menu

P1 Process Time	(sec)	<u>6</u> 0
P2 Process Time	(sec)	10
P3 Process Time	(sec)	0
P3 Percentage		10
Process Temperature	(°C)	60.00
Temp. Tolerance	(°C)	10.00
DONE	ESC	

P1 Process Time: Process time in tank 1.

P2 Process Time: Additional process time in tank 1.

P3 Process Time: Fixed process time. This supersedes P3 Percentage when any value other than zero is entered here. If both this item and P3 Percentage are set at zero, P3 process time defaults to 1 second.

P3 Percentage: Sets P3 process time as a function of total tank 1 process time. The value entered here sets a % multiplier:

P3 = P1+P2_(n) %

process unit- operation	Physical transformation of the material (for example, etch or dry).
product	1. The substance (typically wafers) that is processed in the wet system.
	2. The merchandise (such as wet systems and SRDs) GFT sells to its customers.
product environment	The environment immediately surrounding the product (typically wafers).
	Also see process environment.

product lot	The group of wafers (or other product) inside a cassette that are processed in the wet system using a particular recipe. Also known as <i>lot</i> , <i>wafer lot</i> .
product nest	Area inside a tank where the cassette containing the product is placed. The nest holds the cassette to keep it from moving.
production summary	Wafer production summaries of log files can be viewed on the OIP and/or copied to a DOS disk and printed out using a standard word processor. Wet system entry and exit times of wafer lots and alarms during a 24-hour period are recorded by date and stored with <i>.prd</i> filename extensions in log files. See the Files section of the operations manual for a sample of the summary and how to view or print it out.
proportional- integral- derivative setup	See PID parameter setup.
psi	Pounds per square inch.
psia	See pounds per square inch absolute.
psid	See pounds per square inch differential.
psig	See pounds per square inch gauge.
PSW	Pressure switch
PTFE	Polytetrafluoroethylene.
	Also see "Teflon."

pump counters

purge

purge3

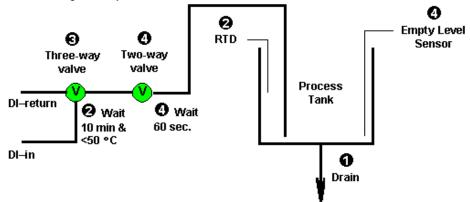
Pump counters track operational cycles of recirculation and staging tank pumps. Trebor pumps use a pressure sensor, mounted on the pump's exhaust side, to sense the movement of the pump bellows. Iwaki pumps use a proximity sensor to sense pump strokes. In both cases, a **Pump cycle count exceeded -- service required.** message is displayed on the touchscreen when the pump has operated for the configured number of cycles. This event may be configured as a Runout alarm, in which case the wet system will finish the lot(s) in process, but new lots cannot be entered until the alarm is cleared.

Pump cycles are shown in real time on the tank control screen. As the pump operates, the displayed number increments. All pump counters are set in tank configuration.

Pump counters are reset to zero by selecting **RESET** on the tank control screen. (It is also necessary to select **CANCEL** if this message is configured as an alarm.)

A preprogrammed procedure (see *macro command buttons*) that drains and flushes a chemical tank with recirculating DI water in order to remove traces of chemical and contaminants from the tank and any associated recirculation system. Chemical tanks are purged before performing maintenance tasks to protect personnel from exposure to any residual chemical.

A tank will have one of two purge routines: PURGE or PURGE3. Their operational sequences differ according to their plumbing hardware. Both can use cold, ambient, or heated DI water. View the tank's control screen to find out which type of purge routine is used. The PURGE macro command button indicates the tank is using the standard purge routine for standard plumbing hardware. The PURGE3 button indicates the tank is using the 'three-way'' valve purge routine for multiple-valve plumbing hardware.


Pressing the PURGE (or PURGE3) macro command button on the tank control screen initiates the purge routine. Each routine is detailed below. The configuration items (such as length of time a pump operates or the number of times the purge routine repeats) of both purge routines are defined in Section 5 of the operations manual.

Standard PURGE routine:

- 1. Tank drains, if it contains any liquid.
- 2. Tank refills with DI water to its upper level (fill or process level).
- **3.** Recirculation pump operates for a configurable length of time (see Section & for the *Purge Time* configuration item).
- 4. Tank drains.
- Standard purge routine repeats for a configurable number of times (see Section 5 (AWS and SAWS) or Section 4 (MWS) for the *Purge Cycles* configuration item).

Three-way PURGE3 routine (see figure below):

- **1.** Tank drains, if it contains any liquid.
- 2. The purge3 routine waits for ten (10) minutes and monitors the tank temperature RTD to report a temperature of less than 50°C.
- When 10 minutes have elapsed and the tank temperature reported is less than 50°C, a closed three-way valve opens and delivers DI water to a closed two-way valve.
- 4. The purge3 routine waits an additional 60 seconds, and:
 - At the end of this 60 second period, the two-way valve opens and delivers DI water to the tank.
 - During the 60 second period, if the Empty level sensor in the tank is triggered an alarm is sent and it is assumed that the two-way valve is leaking. Regardless of alarm status, the purge3 routine continues.
- 5. Tank refills with DI water to its upper level (fill or process level).
- 6. Recirculation pump operates for a configurable length of time (see Section & for the *Purge Time* configuration item).
- 7. Tank drains.
- 8. Three-way purge routine repeats for a configurable number of times (see Section 5 (AWS and SAWS) or Section 4 (MWS) for the *Purge Cycles* configuration item), but in the remaining purge cycles repeats steps 5 though 7 only.

PVDF

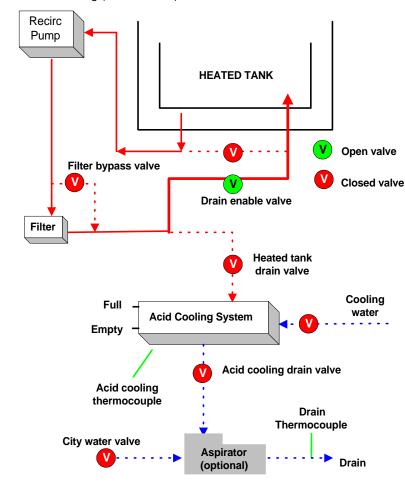
Polyvinyl difluoride or polyvinylidine fluoride.

<u>Q</u>

QA	See quality assurance.			
QC	See quality control.			
QD	Quick dump. See quick dump rinse.			
QDR	Quick dump rinse. See chemical process.			
QDR tank	Tank that uses DI water to rinse wafers after treatment with chemicals. A large drain port in the bottom of the tank quickly opens to dump tank contents. DI water is sprayed on wafer lots during dumps.			
QGS	See quality gain share.			
QNX	The UNIX-based operating system used on GFT wet-system computers. This is a multitasking, micro-kernel operating system, designed specifically for message-passing functions, with its own complete command structure.			
QTF	See quality task force.			
qualification	Procedure to accept a wet-system product.			
quality	Product and service performance that result in customer satisfaction.			
quality assurance (QA)	A planned and systematic pattern of all actions necessary to provide adequate confidence that a product will conform to established requirements.			
quality control (QC)	A management function that includes estimating overall quality of the product and determining any changes needed to achieve or maintain the required level of quality.			
quality gain share (QGS)	A program established by GFT in 1991 that embraces various Total Quality Management (TQM) principles. The program is continually changing and is refined as a result of employee involvement and empowerment. Enables GFT to provide its customers with superior process solutions, products, and services. GFT employees: For complete details, obtain QGS packet from Human Resources.			
quality task force (QTF)	Various cross-functional committees established by QGS that concentrate on improving areas such as on-time shipments, supplier quality, and safety.			
quartz lens	Disperses high frequency energy through the cleaning solution.			
queue	The particular order in which cassettes are lined up for processing.			
queue deck	The platform inside the wet system where cassettes are placed in a particular order while awaiting processing, and where cassettes are placed after processing.			
quick dump rinse (QDR)	A rinse process in which a large drain port in the bottom of the tank quickly opens to dump tank contents. Also see QDR tank; chemical process.			

<u>R</u>

RAM	See random-access memory.		
random-access memory (RAM)	Computer memory that can be read from and written to. RAM is the main internal storage available to the user for programs and data; RAM files may be accessed in any desired order.		
RCA1	See chemical process		
RCA2	See chemical process		
RCD	Rinse Clean Dryer. A Vendor Supplied device. This is a process tank in which the wafers are rinsed and dried. The tank is a dual-contained vessel with an integrated dump-drain valve. Included in the RCD system is an anti-static generator, liquid level and cassette proximity sensors. A lid is positioned on top. Both the IPA and N ₂ gas injector nozzles are mounted underneath the lid. The lid is closed and opened by a pneumatic operated lever, which is controlled by the wet system's cell controller, or can be manually opened from the wet system's RCD tank control screen. The RCD can use up to a 20-step recipe process. Each step defines one function. The function of each step is selectable, but only one function can be selected per step. The time, in seconds, to run each step is associated with the selected function.		
read-only memory (ROM)	Computer memory that can be read from but not written to.		
rear-access module	A module in which the plumbing and electrical compartments can only be accessed from the rear.		
recipe	A sequence of processing steps with associated parameters (such as time, temperature, and fill level) used to process a product.		
recirc	See recirculation.		
recirc pump	See recirculation pump.		


recirculation and draining of heated tanks

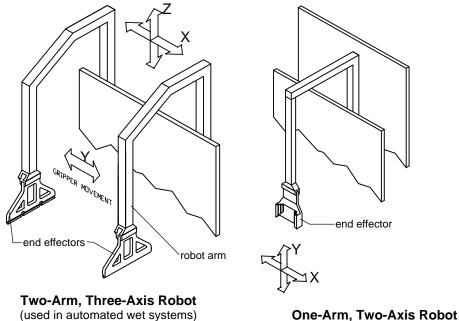
The process of removing contaminants (particles) from fluid by pumping liquid out of the tank's weir, through a filter, and back into the tank.

The process chemical in heated tanks recirculates continuously whenever it reaches the Process Level, regardless of whether a product lot is in the tank. The recirculation loop is shown by the solid lines in drawing to the left.

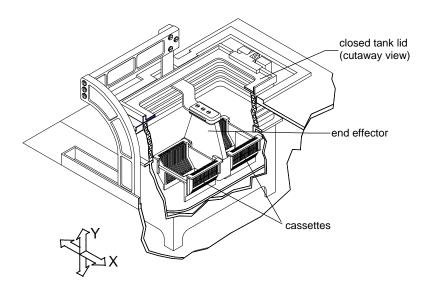
The filter bypass valve diverts chemical from the filter until it has reached an acceptable temperature. This feature is included if the unheated chemical has a high viscosity (is very thick). Without the bypass, chemical may barely flow through the filter until the heated chemical bath approaches process temperature. This function is configured in tank configuration.

During recirculation, the recirculation pump simultaneously pumps process chemical from the tank's inner vessel and the weir. The recirculation pump starts when the chemical falls below the Process Level. When the Low Level N2 bubbler trips, the drain timer starts.

Also see draining (heated tanks).

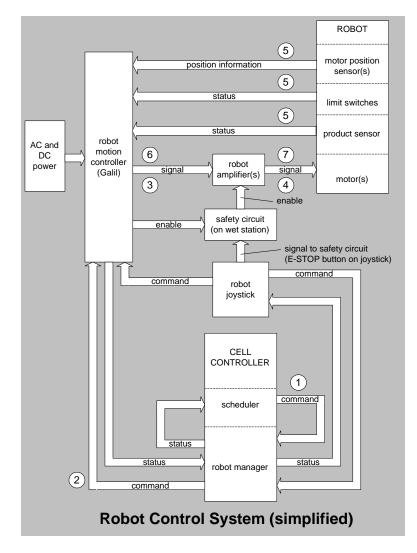

recirculation	The pump that recirculates liquid in the tank.
pump	Also see recirculation; pump counter.
reclaim	To retrieve DI water normally destined for drainage and filtered and reprocessed. Reduces cost of DI production.
refill	To fill again.

REL	Recommended exposure limit.			
remote mode	See local- and remote-mode operation.			
Reset	RESET Returns equipment to a specified state after a configured value (e.g. pump, SRD, or WTU cycle) has been reached. Touchscreen buttons on tank and device control screens enable quick resetting.			
	Also see pump counters.			
resist	Coating placed on the wafer surface to prevent etching.			
resistivity	The ability of a material (typically liquid when referring to wet processing) to resist passage of electrical current either through its bulk or on a surface; usually measured in megohms ($M\Omega$).			
resistivity probe	A device that measures resistivity of DI water for rinsing.			
resist strip	See chemical process.			
Respiratory Protection Program	Program to control occupational diseases caused by breathing air contaminated with harmful substances.			
RET	Return. A command on a touchscreen menu.			
reverse osmosis (RO)	The second step in the process of purifying water for use in semiconductor manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane.			
	manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by			
osmosis (RO)	manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane.			
osmosis (RO) RF	manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane. Radio frequency.			
osmosis (RO) RF rinse, cascade	 manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane. Radio frequency. See cascade rinse. Chemical (typically DI water or IPA) used in the rinse process. Also see process 			
osmosis (RO) RF rinse, cascade rinse chemical	 manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane. Radio frequency. See cascade rinse. Chemical (typically DI water or IPA) used in the rinse process. Also see process chemical. The process used to rinse the product. Typically performed after each chemical process. 			
osmosis (RO) RF rinse, cascade rinse chemical rinse process	 manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane. Radio frequency. See cascade rinse. Chemical (typically DI water or IPA) used in the rinse process. Also see process chemical. The process used to rinse the product. Typically performed after each chemical process. Also known as rinse, rinsing. Immersing the product in a rinse chemical, typically DI water or IPA, usually after each chemical process. Also known as rinse process. Also see quick dump rinse; overflow 			
osmosis (RO) RF rinse, cascade rinse chemical rinse process rinse, rinsing	 manufacturing. RO removes the bulk of ions, organics, bacteria, and particulates by forcing pretreated water under pressure through a semi-permeable membrane. Radio frequency. See cascade rinse. Chemical (typically DI water or IPA) used in the rinse process. Also see process chemical. The process used to rinse the product. Typically performed after each chemical process. Also known as rinse, rinsing. Immersing the product in a rinse chemical, typically DI water or IPA, usually after each chemical process. Also see quick dump rinse; overflow rinse. 			


robot axes When referring to GFT wet systems, axes refers to the directional movement of the robot arms (X, Y, and Z axes).

On two-arm robots, the robot moves horizontally (X axis) and vertically (Z axis), and the arms move in and out to grip and release cassettes (Y axis). The in and out movement of the robot arms is called gripper movement.

On one-arm robots, the robot moves horizontally (X axis) and vertically (Y axis), and there is no gripper movement. See drawings below.

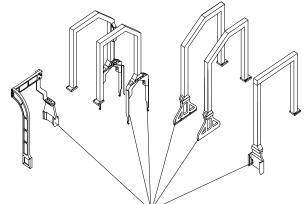

(used in semi-automated wet systems)

One-Arm, Two-Axis Robot with Lid Adapter (used in semi-automated wet systems)

robot control system

The software and hardware that controls and monitors the robot (see drawing below). An explanation of the robot control system follows the drawing.

- 1. Based on a selected recipe, the scheduler (in the cell controller) sends a command to the robot manager (also in the cell controller).
- 2. The robot manager interprets the command, adds information as necessary, and sends it to the robot motion controller.
- 3. The motion controller sends a signal to an amplifier.
- 4. The amplifier sends a signal to the appropriate motor, which moves the robot. (Robots that have more than one axis will have a like number of amplifiers and motors.)
- 5. As the robot begins to move, the robot's motor-position sensor(s), limit switches, and product sensor send messages regarding the robot's status and position to the motion controller.
- 6. Using the information obtained in step 5, the motion controller sends a signal to the robot amplifier.
- 7. The amplifier sends a signal to the appropriate robot motor, which controls the movement of the robot.


During normal wet-system operations, the scheduler controls the robot. During maintenance and homing, the operator controls the robot manually using the robot joystick. The joystick can control the robot either by sending commands to the robot manager or to the motion controller.

The safety circuit, which can be activated by pressing a Robot E-STOP button (on the wet system or joystick) can immediately stop the robot movement by removing the enable signal. Also see robot controller; robot manager software; robot joystick; robot points; home.

robot controller Consists of a multi-axis robot motion controller, amplifier(s), position sensor(s), safety circuit, and motion controller software. The robot controller interacts with the cell controller and robot joystick to activate the robot motors, which move the robot between taught points and at specific speeds and acceleration levels. Also see robot control system.

Robot Emergency Stop

robot end effector (EE) An accessory device attached to the robot-arm mounting plate that enables the robot to perform the intended task; specifically, the device used to pick up and hold the cassette of wafers. The following drawing shows the standard robot end effectors used in GFT wet systems. Also see robot axes.

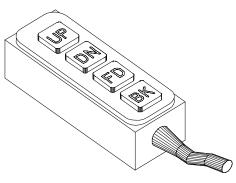
Standard End Effectors

Robot E-STOP (emergency stop) This hard-wired safety circuit removes power from the robot and immediately stops all robot movement. A robot E-STOP can be triggered by one or more of the following:

- A safety shield is opened during automatic processing.
- Any E-STOP pushbutton on the wet system or robot joystick is pushed.
- An obstruction prevents the robot from moving or reaching a destination (in automatic, joystick, or manual modes of operation).
- Robot motor overheats.
- Robol motor overneat

See Robot E-STOP.

Robot control system reports a position error or internal problem.


Automatic processing can continue uninterrupted after a robot E-STOP if:

- 1. the robot is not in motion when the error occurs, and
- 2. the problem is corrected before the next scheduled move.

robot joystick

A handheld, interactive terminal used to home the robot and teach points, control individual robot motors, recover from errors, and work with the robot during maintenance. The joystick can move the robot to taught positions or to any position within the overtravel limits. When the joystick is enabled, all automatic processing and manual moves from the robot control screen are disabled.

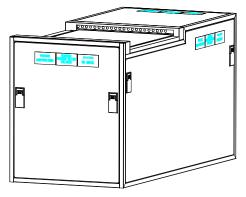
Robot Joystick for VcS and Semi-automated Wet Systems

Robot Joystick for Automated Wet Systems

Joysticks for automated systems include the following:

- point teaching capability
- robot E-STOP pushbutton
- move, home, teach, and gripper-movement controls
- instructions and prompts
- · readout of exact robot position in real time
- onscreen help messages

Joysticks for VcS and semi-automated systems control robot movement along the horizontal and vertical axes.


Also see robot control system.

robot manager software	The software in the cell controller that interprets and coordinates commands and status messages to and from the scheduler, the robot joystick, and the robot motion controller. Also see robot control system.
robot mounting	The location of the robot in the wet system in relation to the tanks. Robots may be mounted behind the tanks (rear mounted), in front of the tanks (front mounted), or at the side of a tank (side mounted).
robot points	The exact locations in the wet system where the robot will pick up and put down cassettes containing the product. An operator "teaches" the points to the robot before processing begins. There is one taught point for each tank or device. Also see robot control system.
robot shield	The physical barrier(s) between the process tanks and the robot. Robot shields protect the robot from chemical damage and help keep particulates out of the process environment. One-arm robots typically have a lower robot shield; two-arm robots typically have an upper and a lower robot shield.

ROM	See read-only memory.
root cause (of an accident)	Weaknesses in the safety and health management system that have allowed the surface causes to exist. The underlying reason for an accident or incident.
rpm	Revolutions per minute.
RS-232C	An industry standard 25-pin connector for asynchronous serial data communications.
RTD	Resistance temperature device. A device used to measure the temperature of process chemicals based on a change in resistivity proportional to the temperature. A small platinum coil (the resistance temperature detector) is the most common resistive medium used in the device.
	Also see temperature controls.
RTP	Rapid thermal processing.

<u>S</u>

safe location	A position for the robot, before HOME is initiated, from which the robot can be moved without hitting an obstruction. The robot end effectors must not be in a tank or holding product.
safe tank	A DI water tank that can hold a cassette in case of a processing error or alarm. In automated wet systems, the control software ensures the availability of a safe tank for every product lot in process.
	Also see GoToSafe.
Safety and Health Committee	Employee/manager group that advises management on improvements to the safety program, participates in accident investigations, and inspects the workplace for hazards.
safety shield	Clear-plastic sliding "window" across the front and sometimes the ends of the wet system. Safety shields provide a safety barrier between personnel and the robot and process chemicals. They also maintain cleanliness in the wet system.
	Safety shields may be automatic or manual. A hardwired interlock causes a Robot E- STOP when a manual safety shield is opened during wet-system operation. Automatic safety shields may be opened for specified periods of time during wet system operations without causing an E-STOP. Check the operating manual for specific procedures.
	Also see keyswitch.
SC1	Standard clean type 1. See chemical process.
SC2	Standard clean type 2. See chemical process.
SC200	The SuperClean SC200 Spin Rinser Dryer is a horizontal top-loading programmable rinser/dryer used to clean semiconductor substrates such as wafers, photomasks, and other wafer manufacturing devices up to 8 inches (200mm) in diameter, and is compatible with front and rear 2-axis robotics.

scaling factor Proportional term used in converting a milliamp (mA) input signal from a monitoring device into a physical measurement (engineering unit). A mA signal is an analog input because it corresponds proportionally to a measurable physical condition: the higher the amperage the device generates, the greater the physical reading.

Tank Temp Scaling and Resist Scaling factors are used in converting milliamp input signals to degrees Celsius and megaohms, respectively. These calculated values are:

- 1. displayed on the tank control screen for the operator to view
- 2. recorded in log and lot files
- 3. input to the heating control PID calculation

The milliamp-to-engineering unit conversion occurs in three major steps:

- 1. Analog Signal. A monitoring device sends a mA signal to the PLC.
- 2. Analog-to-Digital Conversion. The PLC converts the mA signal to a corresponding number based on 32,000 digital units.
- 3. **Engineering Unit**. The PLC uses the scaling factor (the ratio of the monitored range to the digital units) to calculate temperature, flow, or resistivity.

Calculating a Scaling Factor

NOTE

The scaling factor will not, in itself, ensure accurate monitoring. The monitoring device (thermometer, flowmeter, resistivity monitor) must be calibrated properly according to manufacturer's specifications.

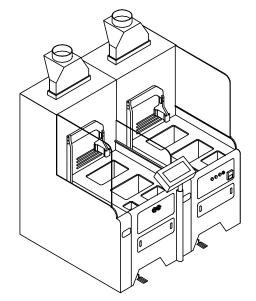
To calculate a scaling factor, divide the PLC's digital unit value (32,000) into the device's maximum input range as follows:

- Find the high number of the device's monitored range and multiply it by the appropriate precision scaling value (see below).
- Divide 32,000 into that number.
- Enter the answer in the touchscreen configuration screen.

Tank Temp Scali Stage Temp Scal Resist Scaling	
DONE	ESC

Precision Scale

	A multiplier is used to calibrate the precision of the measure output. A 100,000 multiplier provides a 0.1 precision; a 100,000,000 multiplier produces a 0.01 precision. The following examples show how this function works. For temperature if the monitor has a 0-200°C range: 200 x 100,000 / 32,000 = 625 In this example, entering 625 in the configuration screen will yield temperature monitoring with a 0.1 precision. For resistivity if the monitor has a 0-18 megaohm range: 18 x 100,000,000 / 32,000 = 56,250 In this example, entering 56,250 in the configuration screen will yield resistivity monitoring with a 0.01 precision.
scfh	Standard cubic feet per hour (unit of volumetric flow rate).
scfm scheduler	Standard cubic feet per minute (unit of volumetric flow rate). The GFT scheduler is designed to orchestrate the movement of multiple lots safely through various process scenarios in an efficient fashion. A recipe is a series of process steps at various stations. Some of these steps are at locations where the lot must be removed immediately upon process completion. Others, called safe havens, may hold product beyond the completion of process without harm. Moves from stations where product must be removed on process completion are called critical moves, and moves from safe havens are called safe moves. Transport resources, usually one or more robots, must be allocated for these movements. Each recipe is broken down into a series of process segments, each of which ends at a safe haven. The segments from various work orders are interleaved for efficiency. Each work order contends for process and transport resources, and begins a process segment when all resources necessary to insure safe movement through the segment have been acquired. All process devices must be available and prepped to recipe parameters before product delivery. The robot is a critical scheduling element, since it must be prepped(washed and/or dried) differently for different transfers. These preparations are time-consuming, and must be complete before the transfers can be made. The robot is typically a resource for multiple concurrent work orders, more than one of which may have critical moves scheduled, so accurate forecasting of process completion is essential so that these critical transfers can be prepared for and made on time. This may sometimes require the robot to stand idle rather than begin a safe transfer which could not be completed before the critical transfer time arrives.
SCR	Silicon-controlled rectifier. A device that controls electrical power.
scrap wafer	A wafer that has no commercial value, typically caused by a processing error.
SECS	SEMI Equipment Communications Standard. Note: GEM - Host Communications is a separate standard.
SECS-I and SECS-II	SEMI industry-standard protocol used for communications between devices and control computers.


The ability of a substance to etch another substance (expressed as a ratio, usually a selectivity phosphoric acid etch rate ratio of Si₃N₄:SiO₂ of 100:1).

Semiconductor Equipment and Materials International. SEMI

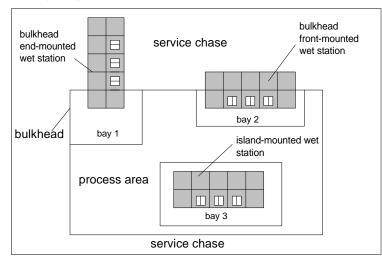
Semi-automated wet systems have the following features and capabilities: semi-automated wet system (SAWS)

- The operator manually loads and unloads cassettes from the robot's end effector, which does not release cassettes during processing.
- A one-arm, two-axis robot transfers cassettes from one tank to another and to the • input position.
- The control software schedules cassette transfers, tank prepping, and wafer processing.
- Tanks are arranged from the front to the rear of the wet system (front-to-rear arrangement).
- The product lot begins in a dry state and ends in a wet state. The wet system has no dry in-dry out capability (the operator removes the cassette from the final rinse tank and transfers it to the spin rinser/dryer (SRD) as the final processing step).
- With exceptions; only one product lot is processed at a time. The robot does not release the cassette until the entire recipe has been completed.

Also see wet system; automated wet system; manual wet system.

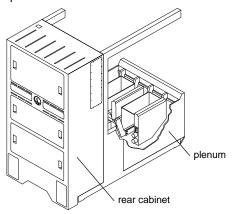
A material that has a resistivity between that of metals and insulators. May or may not semiconductor conduct depending on source.

semiconductor A slice of semiconductor material from a rod or ingot.


International standards for the semiconductor industry.

SEMI International Standards 1995

die


SEMI S2-93 "Safety Guidelines for Semiconductor Manufacturing Equipment," chapter in SEMI International Standards 1995.

SEMI S6-93"Safety Guidelines for Ventilation," chapter in SEMI International Standards 1995.service chaseThe area of the cleanroom surrounding (or behind) the process area. This area allows
access to the plumbing and electrical cabinets of process equipment for servicing. Also
known as chase; core; service core.

- service core See service chase (preferred term).
- **servo motor** Motor used in robotics applications where motor speed or rotation are both controlled by a corrective signal that is amplified and fed to a motor circuit.
- shared memory A designated block of memory for data exchange between the PLC and cell controller. region (SMR)
- shell, module The re

The rear cabinet plus the plenum.

shield, robot See robot shield.

Si See silicon.

Silicon nitride. Used as a mask.

signal generator	Electronic testing device used to supply a standard voltage of known amplitude and frequency.		
SiH₄	Silane gas.		
silicon (Si)	A semi-metallic element used in the manufacture of integrated circuits. Next to oxygen, silicon is the most abundant element in the Earth's crust and is widely found in sand and clay. Silicon grows with a native oxide on its surface, and is perfect for delivering and protecting an exact wiring pattern of millions of integrated circuits that make up a chip.		
silicon dioxide	SiO ₂ . Used as a mask.		
silicon nitride	Si ₃ N ₄ . Used as a mask.		
SiO ₂	Silicon dioxide. Used as a mask.		
slope etch	See chemical process.		
SLV	Solvent. chemical process.		
SMIF	Standard mechanical interface.		
SMR	See shared memory region.		
Smart DI Ultra Pure Water Heating System	Rippey DI heating unit.		
sodium chloride	NaCl.		
sodium hydroxide	NaOH.		
software	Programs or instructions used to control the operations of a computer.		
solvent	See chemical process.		
SPC	Statistical process control.		
spiking pump	See metering pump (preferred term).		
SPM	Sulfuric peroxide mixture. See chemical process.		
sputtering	Process similar to evaporation.		
SRD	Spin rinser/dryer.		
SRD module	The module in which the product is rinsed and dried using the SRD (spin rinser/dryer).		
SRF	Surfactant. See chemical process.		

SSQA Standardized supplier quality assessment.

SSR Solid-state relay.

staging tank Reservoirs of chemical for release to the process tank. These tanks can be configured for several different functions:

- heating the chemical
- Initial filling of the process tank to a specified concentration
- · replenishing the process tank to maintain liquid levels
- spiking the process tank to maintain chemical concentration

Staging tanks are located in their module's plumbing compartment. These small service tanks automatically dispense preset quantities of chemical to the module's chemical tank. The volume, frequency and number of dispense cycles are programmable.

Manual fill staging tanks are located in the plumbing compartment of the applicable modules. On manual-fill systems, chemical is poured into the staging-tank fill port (a funnel mounted on the front of the module) until the level of the liquid can be seen in the feed tube. The staging tank can then dispense preset quantities of chemical automatically. The volume, frequency and number of dispense cycles are set in each recipe.

Two level sensors, empty and low level, are mounted on the side of the staging tank. When the liquid level drops below the low-level sensor, a warning message appears on the touchscreen to notify the operator that the staging tank requires filling soon. If the tank is not refilled before the level drops to the empty-level sensor, the operator is alerted to refill the tank immediately.

Bulkfill staging tanks receive chemicals directly from the facility's chemical bulkfill system.

Three level indicators, low, process (or fill), and high, are mounted on the side of the staging tank. When liquid level drops below the low-level sensor, the tank fills automatically to the fill-level sensor. If chemical reaches the high-level sensor, the main fill valve closes immediately.

During wafer processing, staging tanks automatically release chemical to the process tank to (1) maintain chemical consistency, or (2) replenish the liquid to the process level. The liquid is delivered to the process tank by way of a metering pump or dispense valve. Metering (spiking) pumps precisely control the volume of chemical added to the process tank. Dispense valves are gravity fed. Because the flow rate to the process tank is greater than through a metering pump, the tanks fills more rapidly. However, the volume of fluid cannot be as accurately controlled.

Stage Tanks (Fixed-Volume Dispensing)

In fixed dispensing, the chemical bath operates at a particular chemical ratio set by a process engineer. Each of the bath's associated stage tanks is manually calibrated and configured to dispense a given volume. For example, to achieve a bath ratio of 10:2:1, the system would need to dispense 7000 ml of one chemical and 3500 ml of the second chemical. (The first value, 10, is DI water, which is not delivered to the bath via a stage tank.) The Fill level sensor on each stage tank is calibrated with graduated cylinders and set to dispense those volumes. A change in bath ratio requires adjustment and recalibration of the stage tank level sensors.

	Level-Sensing Functions of Staging Tanks
	Manually-Filled Staging Tanks
Low	When liquid level drops below this sensor, the operator is alerted to refill the tank immediately.
Process	When liquid level drops below the process-level sensor, a warning message appears on the touchscreen notifying operator that the staging tank requires filling soon.
	Automated Bulkfill Staging Tanks (Fixed-Volume Dispense)
Low	When liquid level drops below the low-level sensor, the bulkfill valve opens automatically, then closes when the process-level sensor is reached.
Fill or Process	When liquid reaches this level, the bulkfill valve closes.
High	Hardwired to a second fill valve plumbed in series with the primary fill valve. When chemical reaches this sensor, both fill valves close. This is a redundant valve for safety.
	Automated Bulkfill Staging Tanks (Variable-Volume Dispense)
Low	When liquid level drops below the low-level sensor, the bulkfill valve opens automatically, then closes when the A, B, or C level sensor is reached.
A, B, C	Three levels replace the single Process or Fill sensor used in a fixed-dispense system. When liquid reaches one of these levels, the bulkfill valve closes. The level to be reached is automatically determined to meet a configured chemical ratio. See the variable-volume dispensing example below.
High	Hardwired to a second fill valve plumbed in series with the primary fill valve. When chemical reaches this sensor, both fill valves close. This is a redundant valve for safety.

3-Level Stage Tanks (Variable-Volume Dispensing Of Dilute Chemistries)

Variable dispense schemes enable a bath ratio to be changed without adjusting and recalibrating stage tank level sensors. These schemes use five level sensors on the stage tank. Three variable level sensors, labeled A, B, and C, replace the single-variable Fill or Process level sensor. The desired chemistry ratio is specified in recipe management (**Chem [#] Ratio** line item).

There are two variable-dispense schemes. The first is for a process bath with a single dispense of a prediluted chemical (typically HF). The second is for a bath that uses two chemicals without predilution. In both schemes, a cell controller script derives chemical volume values (CHEMVOLs) from parameters that are set in tank configuration. These parameters include stage tank levels A, B, C, bath volume, and predilution ratios from. (See 3-Level Stage Setup in *Tank configuration*.)

NOTE

Chemical ratios can be changed in tank configuration only after the tank has been drained.

Example of Variable-Volume Dispensing of Two Chemicals			
Desired ratio	10:02:01	Stage level C	4000 ml
Bath volume	49.1 liters	Stage level B	1200 ml
Chem1VOL	7538	Stage level A	135 ml
Chem2VOL	3769	Pump volume	8 ml per stroke

From the desired ratio and total bath volume, a cell controller subscript determines Chem1 volume is 7,538 ml, then sends this to the PLC as parameter CHM1VOL. The PLC uses a subroutine called BEAKER2 to compare CHM1VOL with stage tank levels, then dispenses 4000 ml on the first cycle, subtracts 4000 ml from CHMVOL, and adds it to BKRVOL, ending the first cycle. The new CHMVOL value is again compared with the stage tank level sensor volumes, and the greatest volume possible is dispensed—in this case 1200 ml. This cycle repeats until the CHMVOL value is less than the value of the stage tank Level A.

The metering pump dispenses the remaining volume, at 8 ml per stroke, until the volume dispensed equals or exceeds CHMVOL. Because the metering pump dispenses in 8-ml increments, it is possible for the total chemical to exceed the configured value by as much as 7 ml. When the dispense sequence for Chem1 is complete, the dispense sequence for Chem2 begins, using the same sequence described above.

Chem1		Chem2			
Dispense	CHMVOL	BKRVOL	Dispense	CHMVOL	BKRVOL
0	7538	0	0	3769	0
4000	3538	4000	1200	2569	1200
1200	2338	5200	1200	1369	2400
1200	1138	6400	1200	169	3600
135	1003	6535	135	34	3735
135	868	6670	8	26	3743
135	733	6805	8	18	3751
135	598	6940	8	10	3759
135	463	7075	8	2	3767
135	328	7210	8		
135	193	7345			
135	58	7480			
8	50	7488			
8	42	7496			
8	34	7504			
8	26	7512			
8	18	7520			
8	10	7528			
8	2	7536			
8					

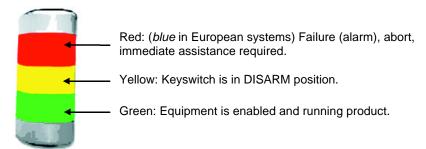
Increments of chemical dispensing. All values are in milliliters.

standard clean type 1 (SC1)

See chemical process.

standard clean

See chemical process.


type 2 (SC2)

static

Without movement or change.

static eliminator Device used to neutralize non-conductive materials by producing a region of ionized gas through which charged materials can pass.

status beacon Also known as *light tree*. A three-light indicator that reveals wet-system status.

Color	Condition	Wet System Condition	Operator Action	Example
RED or BLUE	Flashing	Emergency.	Immediate action; e.g. correct alarm condition or push EMO.	Robot malfunction; pressure exceeds safe limit
YELLOW	Flashing	Abnormal and/or hazardous.	Careful monitoring and/or intervention	Keyswitch is in DISARM position.
	Off	Normal.	No operator action indicated	Keyswitch is in AUTO position.
GREEN	Steady On	Powered on. No alarms or problems.	None required.	Wet system is processing normally.
	Flashing	Operator notification.	Mandatory operator action.	Operator prompted to enter or remove cassette.
	Off	Powered down.	None	
NOTES				

Also see critical alarms and exhaust alarms.

NOTES:

1. Blue is used in place of red in European countries. (See European Standard EN-60204-1).

2. Multiple lights may be lit simultaneously when multiple conditions are present.

Stepper motor	A compact DC motor with high torque used to transport a wafer load across an ultraclean Megasonic energy beam.
strip	See stripping.
stripping	The process of removing (chemically dissolving) and entire surface layer of the water, in contrast to etching, which removes only selected material. Stripping processes are typically named for the material being stripped (for example, oxide strip and nitride strip). Stripping is measured in Ångstrom units.
	Also see etching.
subambient	See temperature of process chemicals.
subfab	The area below the cleanroom that contains auxiliary equipment such as DI water heaters, facility fire-suppression system, and bulk-chemical dispensers.

substrate	The physical material (sapphire, silicon, or ceramic) upon which an electronic circuit is fabricated. Used for mechanical support.
sulfuric acid	H ₂ SO ₄ .
sulfuric peroxide mixture (SPM)	See chemical process.
Sunburst Meg	Sunburst Megasonics.
surface cause (of an accident)	A readily apparent reason for an accident or incident that usually appears early in an accident/incident investigation, but is not the root cause. Usually a pre-existing unsafe condition or practice (a hazard).
surfactant	Detergent-like additive used in wet-system processes to clean wafers.
	Also see chemical process.
SV	Solenoid valve.
swingarm	Curved pole mounted to the wet system upon which the operator interface assembly is attached. See operator interface assembly.
SWS	See semi-automated wet system.
SWSF	Semi-automated wet system, front access.
SWSR	Semi-automated wet system, rear access.

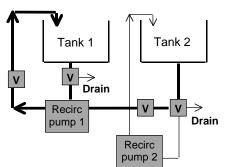
T

tachometer	Measuring device for rotations / revolutions per minute.
TDC	Transducer Dead Center
tank, chemical	See chemical tank (preferred term).
tank	Programming the control system, through a series of touchscreen displays, to define:
configuration	 hardware devices present on each tank process values to enforce (times, flows, resistivities, and other process limits that define recipes) Tank configuration is password-protected and should be performed only by process engineers or other personnel with advanced understanding of wet-system operations and process chemistry.
tank draining	See recirculation.
tank heating and cooling	See temperature controls.
tank levels	Every wet system tank has at least one level sensor. Process and rinse tanks use N_2 bubbler sensors; staging tanks use capacitance sensors. Inputs from these sensors are interlocked to automated alarms, safety interlocks, and filling-draining functions. See the table below for more details.

	Level Interlocks for Wet System Tanks				
Levels	Interlocks				
	Process Tan	ks			
High	Activates a Main tank is overfull alar	m.			
Fill	During a tank prep, when this level is into the tank. This level is above the F the plumbing lines in the recirculation	Process level to compensate for filling			
Process	Normal processing level. If the liquid lautomatic processing, a Process Leve	evel falls below this level during el Lost alarm occurs.			
	With PREFILL LOW LEV	Without PREFILL LOW LEV			
Low	 Stops DI water prefill at this level during tank PREP. The heater starts when this level is reached, and turns off whenever this level is lost to protect the heater and Megasonic. 	The heater starts when this level is reached, and turns off whenever this level is lost to protect the heater and Megasonic.			
Empty Starts the drain timer. Tells the control system when the tank is empty following a drain command.					
Rinse Tanks					
Process	 Triggers an alarm if liquid drops below this process level (set high enough to ensure complete coverage of wafers during rinsing). Triggers change from high to low flow rate. The tank fills at a high flow rate, then (to conserve water) changes to a low flow rate when this sensor level is reached. 				
Low	Used in rinse tanks equipped with Megasonic units to ensure that they are covered with DI water when they are active.				
	Manually-filled Stag				
Process	When liquid level drops below the process-level sensor, a warning message appears on the touchscreen notifying operator that the staging tank requires filling soon.				
Low	When liquid level drops below this sensor, the operator is alerted to refill the tank immediately.				
Bulk-filled Staging Tanks					
High	High Hardwired to a second fill valve plumbed in series with the primary fill valve. When chemical reaches this sensor, both fill valves close. This is a redundant valve for safety.				
Process	When liquid reaches this level, the bulk-fill valve closes.				
Low	When liquid level drops below the low-level sensor, the bulk-fill valve opens automatically, then closes when the process-level sensor is reached.				
EE-Wash Tank					
Process	The EE wash tank has an overflow function. The tank fills from the bottom at a high flow rate, then (to conserve water) changes to a low flow rate when this sensor level is reached.				

tank, process	See chemical tank.
tank, rinse	See rinse tank.
tank, safe	See safe tank.
tank, staging	See staging tank.
tank-support	Supports the chemic

Supports the chemical tank and the lip-exhaust collar (if present). The tank-support beam rests on the tank-support shelf. See drawing below.



Chemical Tank (side view)

tank-to-tank chemical transfer

beam

TRONSFER

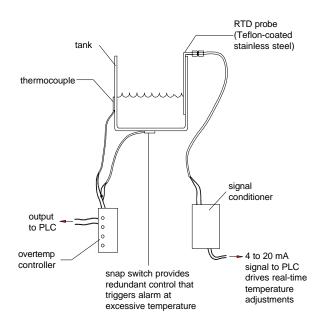


This automated sequence moves chemical from one chemical tank to another in the same module (not between different modules). This sequence, typically used in a two-step process that uses the same chemical, allows the cleaner chemical in tank 2 to be reused in tank 1 before being drained from the wet system. This sequence is often used at regular bath changeouts, but can be used whenever the tanks are not allocated.

The automated transfer sequence starts by selecting TRANSFER in the tank 2 control screen:

- 1. Tank 1drains.
- 2. When tank 1 level lowers to Empty, the tank 2 drain valve opens, and routes the flow through the tank 1 recirculation pump.
- **3.** Tank 1 recirculation pump starts, directing chemical into tank 1.
- 4. When tank 2 level lowers to Empty, the transfer continues for the time set in Transfer Drain Timer (see Section 5.2.6 in the Operations Manual).
- 5. Tank 2 automatically reset to allow a new PREP sequence.
- 6. Tank 1 is topped-off with appropriate chemical, if so configured.

tank, VcS	See VcS tank.		
тс	See thermocouple.		
TDR	Time-delay relay.		
teaching points	See robot points.		
"Teflon"	Family of fluoropolymers (including FEP, PFA, and PTFE) produced from resins manufactured by the DuPont Company.		
Tefzelã	A Du Pont copolymer product of ethylene and TFE used for coating stainless steel robot end effectors		
temperature control for static-bath nitride-strip processes	Nonrecirculated nitride strip processes use the injection of ambient-temperature DI water to control bath temperature. See drawing below.		
	manual flow- ambient-temperature control valve AOV DI-water line		


Temperature Control for Nitride-Strip Processes (simplified view)

The bath is heated by a blanket heater and cooled by injection of ambient-temperature DI water (see drawing). The blanket heater and an air-operated valve (AOV) in the DI water line are both controlled by a proportional-integral-derivative (PID) loop within the PLC program.

When the bath temperature is below the recipe's setpoint, the PID loop turns on the heater to 100% capacity and closes the AOV. When the temperature exceeds an upper tolerance, the heater turns off and the DI water valve opens, cooling the bath. A manual flow-control valve is adjusted to add enough DI water to (1) lower bath temperature, and (2) replace the DI water boiled from the bath, without significantly changing the phosphoric acid to-DI-water ratio. (This "on or off" function is different from the variable output usually associated with PID controls.)

This control scheme maintains nitride process bath temperature at 165± 2°C.

temperature controls Control the temperature of chemicals in chemical tanks, or DI water in hot-rinse tanks. Temperature-control components in GFT wet systems include. See drawing below.

Standard Temperature-Control System

- 1. Heaters; heater/chillers:
 - Heater/chiller—device typically used with HF process to maintain near-ambient process temperature (usually about 20-35°C) by heating or cooling the fluid as it flows through coils in the recirculation loop heat exchanger.
 - Inline heater—device typically used with APM process to maintain a medium process temperature (about 60°C) by heating the process chemicals in a recirculation loop.
 - Blanket heater (also called integral heater)--device typically used with hot phosphoric process to maintain a high process temperature (above 100°C) by heating the outside of the tank with an electric coil.
 - Immersion heater--same as blanket heater except that the heater coils contact the process chemical in the tank.
 - External DI heater--device outside the wet system heats DI water for a hot-rinse process. Used when facility-supplied heated DI water is not available. A hot rinse reduces the thermal shock to wafers after hot chemical processing and quickly removes residual chemical.
- 2. Temperature monitors and controls:
 - Thermocouples measure the temperature of the heater elements. The output is sent to the PLC by way of an overtemperature controller.
 - RTD (resistance temperature device) probe monitors chemical temperatures in the tanks and sends signals to a signal conditioner. The signal conditioner, in turn, sends the signals to PID loops (within the PLC) that drive real-time temperature adjustments.

An RTD probe may be used to monitor the DI-water temperature in a rinse tank during a hot-rinse process but, in this case, it is used for information only and the signals bypass the control system.

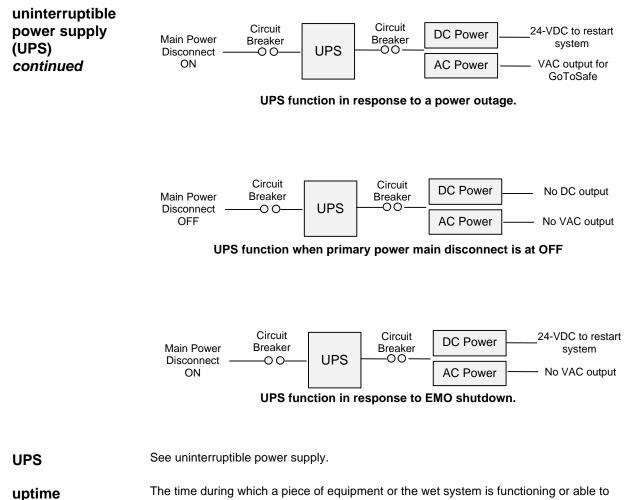
 Overtemperature control. Snap switches and overtemperature controls, hardwired to the heater contactor, trigger alarms and shut off the heater if a heater element reaches excessive temperature.

Also see temperature of process chemicals; temperature control for nitride-strip processes.

	Temperature	Range (°C)	Tolerance (°C)	Control Device		
temperature of	Non-heated	N/A	N/A	Uncontrolled		
process	Heated–Chilled	15-35	+/- 0.5	Heater/chiller		
chemicals	Heated (medium)	>36-100	+/- 1.0	Inline, blanket, immersion, or external DI heater		
	Heated (high) >100 +/- 2.0 Inline, blanket, or immersion heater					
TFE thermocouple	See PTFE. Used to measure temperature. Two dissimilar metals are welded together to develop a galvanic potential. The voltage output changes proportionally to the temperature.					
(TC)	gaivanic potentia	i. The voltage o	utput changes prop	onionally to the temperature.		
three-axis robot	Also known as two-arm robot. See robot axes.					
throughput	Processing capability of a wet system; that is, the number of wafers per hour a particular wet system can process using a particular recipe. Throughput is calculated using a formula that assumes the availability of a safe tank for every product lot in process					
Ti strip	Titanium strip. APM is the preferred term. See chemical process					
timers	See debounce timers.					
TLV	Threshold limit value. The airborne concentration of a material to which nearly all persons can be exposed day after day without adverse effects.					
TLV-C	Threshold limit value-ceiling. The ceiling exposure limit. The concentration that should not be exceeded even instantaneously.					
TLV-STEL	Threshold limit value-short-term exposure limit. The short-term exposure limit or maximum concentration for a continuous 15-minute exposure period (maximum of four such periods per day, with at least 60 minutes between exposure periods) and provided that the TLV-TWA is not exceeded.					
TLV-TWA	Threshold limit value-time weighted average. The allowable time-weighted average concentration for a normal 8-hour workday or 40-hour work week.					
тос	Total organic carbon.					
tool	See wet system (preferred term).					
topoff	An automated chemical fill sequence used to prevent unnecessary Process level lost alarms during processing. See topoff in tank configuration.					
torque	(noun) A force the	at tends to prod	uce rotation or twist	ting; used for large loads.		
-	(verb) To tighten	to a specific lev	el.			
total organic carbon	TOC.					

touchscreen	A touch-sensitive computer screen used for operator interface, allowing input to the CPU by touching menu items and icons on the screen. The operator uses the touchscreen to perform wet-system control functions and view color graphics. Also known as <i>operator interface touchscreen</i> . Also see operator interface assembly.
	The color of the icons on the touchscreen indicates the status of the corresponding wet- system components. Icon color on the touchscreen display indicates the status of the wet-system components.
transducer	 A piezoelectric crystal bonded to a quartz lens; used to convert RF energy into acoustical energy. All GFT Sunburst and Ultraclean cleaning systems use them.
	 Converts a physical measurement (such as pressure, flow, or temperature) to an electrical signal.
transport cassette	See cassette.
trickle bypass	See high/low flow plumbing.
two-axis robot	Also known as one-arm robot. See robot axes.

<u>U</u>


- ULPA Ultra-low particulate air.
- **UNC** United national coarse (threads).
- **UNF** United national fine (threads).

uniformity Consistent surface topography across a wafer's surface.

uninterruptible Supplies electric power to the wet system as follows:

power supply (UPS)

Responses to Power Loss				
Power Loss UPS Response Type		Wet System Response		
Power outage	Supplies AC power to robot, touchscreen/cell controller, PLC, and 24-VDC power supply.	 Recipes in progress stop and cannot be recovered Automated GoToSafe response 		
Main disconnect lever at OFF	All electrical input to and output from UPS are cut off.	 All automatic valves close All physical movement and operations powered by wet system are disabled All UPS output is cut off 		
EMO pushbutton engaged	Input VAC to UPS is not cut off but UPS supplies only a 24- VDC startup circuit.	 All automatic valves go to default position All physical movement is disabled Exhaust system response is configurable. See <i>Exhaust</i> in AWS Specification for details. 		

- function.
- UV/IR Ultraviolet/infrared.

<u>V</u>

VAC	Volts alternating current.
VcS	VerteqcleanSystem
VLSI	Very Large Scale Integration
vapor deposition	see evaporation
variable dip	Enables the Full-auto robot to hold onto a cassette, rather than release it, during a short step in a process recipe. The threshold can be set at any time value, but it is often used for a recipe step of <30 seconds, when the robot does not have enough time to complete another action before removing the cassette. Typically used in HF processes, this function is set by GFT software engineers, not on the touchscreen interface.
VDC	Volts direct current.
VERTEQ (old style logo) Verteq becomes Goldfinger Technologies, LLC in 2004	VERVersatilityTTechnologyEEquipmentQQualityOld Style DefinitionOld StyleOld Style DefinitionOld StyleOld Style DefinitionOld StyleOld Style DefinitionOld StyleOutputOld StyleOutputOld StyleOutputOld StyleOutputOld StyleOutputOld StyleOutputOld StyleOutputOld StyleOutputOld StyleOutput<
vertical obstruction sensor (VOS)	See obstruction sensor.
VLF hood	Vertical laminar flow hood. A protective covering on the wet system that provides ventilation by removing fumes, dusts, and gases. Also known as hood.
	Also see laminar flow.
VOS	Vertical obstruction sensor. See obstruction sensor.

-tank enclosure

<u>W</u>

wafer	A thin circular disk (typically made from silicon) on which many integrated circuits are fabricated and subsequently diced up into individual chips.
wafer lot	See product lot (preferred term).
wafer processing	See process.
watts	Unit of power; 1/746 horsepower
waveform	Graphic display of voltage (amplitude) vs. time (frequency); relationship of voltage, current, power vs. time.
weir	The area of the chemical tank between the inner vessel and the tank enclosure that accepts input overflow and normal recirculation overflow (see drawing). The weir also isolates overflow liquid for heating and cooling.
	flange

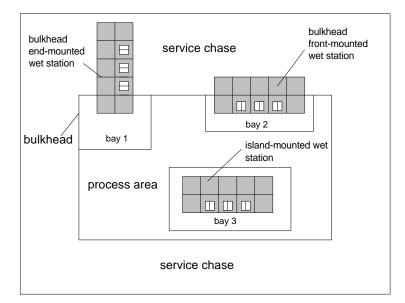
wet processing The application of chemicals in a liquid state in the cleaning, etching, and stripping of the semiconductor-fabrication cycle. The principal challenge is to remove organic, ionic, and particulate contaminants from the wafer surface prior to the many manufacturing steps, without increasing wafer surface roughness.

Also see process.

wet system An immersion-processing system that cleans, etches, and strips silicon wafers and other substrates by combining wet chemistry, rinse tanks, dryers, robotics, and control software.

Also see automated wet system; semi-automated wet system; manual wet system.

A typical GFT wet system (Automated or Semi-Automated) with major parts labeled is shown in the foldout drawings. Note that the wet-system drawings were prepared for training purposes; consequently, they include parts from more than one type of wet system. A wet system sold at a customer's facility would not contain all of the parts shown in the drawings. Also, parts on an actual wet system may be in different locations than those shown on the drawings. wet-system


mounting

 wet-system
 The software and hardware that interact to control the wet system. See the foldout drawings.

 control system

Refers to the location and manner of placement of the wet system in the cleanroom. Types of wet-system mounting include the following (see drawing):

- *Bulkhead mounted:* The wet system is enclosed in a wall either transversely or longitudinally. Types of bulkhead mounting include:
 - * end mounted—the operator I/O portion at the end of the wet system is accessible from the process area
 - * front mounted—the front of the wet system is accessible from the process area
- Island mounted: The entire wet system is inside the process area of the cleanroom, not attached or surrounded by a wall.

- WG Water gauge. Used for measuring air pressure.
- WIP Wafers in process. Also known as work in process.
- WPP White polypropylene.
- WTU Wafer transfer unit.

<u>X</u>

x-rayA process similar to photolithography except that x-rays rather than light are used to
expose the film coating.

yield

Count of successful circuits at completion of a semiconductor manufacturing process, expressed as a percent of the total.

<u>Z</u>

There are no entries for Z.